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The Data-enabled Policy Optimization (DeePO) algorithm
[1], [2] is an adaptive, direct, data-driven method for com-
puting Linear Quadratic Regulators (LQR) for controllable
linear time-invariant (LTI) systems. DeePO incorporates an
adaptation feature on top of direct data-driven LQR design.
At each time step, newly measured input and state data
are added to the previously stored dataset, and the control
feedback gain is updated iteratively using a learning rate,
steering the design towards reducing the objective function’s
cost based on the updated data. Consider an LTI discrete-time
system, represented in state space form as:

xk+1 = Axk +Buk +ωωωk,

zk =

[
Q1/2 0n×m

0m×n R1/2

][
xk
uk

]
,

(1)

where k ∈ N is the index for counting samples, x ∈ Rn is
the state, u ∈ Rm represents the input, and ωωωk is noise.
Furthermore, let zk ∈Rn+m represent the performance signal.
We assume that the pair (A,B) is controllable, and that
(Q,R) are positive definite square matrices with compatible
dimensions. The objective of the LQR design is to determine
a state feedback controller, K ∈ Rm×n, that minimizes the
H2-norm of the transfer function T (K) : ωωω 7→ z of:[

xk+1
zk

]
=

 A+BK In[
Q1/2

R1/2K

]
0(m+n)×n

[
xk
ωωωk

]
(2)

If (A,B) are unknown, it may still be possible to find
LQR. Suppose signals of length t of states, inputs, noises,
and successor states, which do not necessarily need to be
consecutive. These signals are defined as follows:

X0 ≜
[
x0 x1 · · · xt−1

]
,

X1 ≜
[
x1 x2 · · · xt

]
,

U0 ≜
[
u0 u1 · · · ut−1

]
,

W0 ≜
[
ωωω0 ωωω1 · · · ωωω t−1

]
.

(3)

The input signal U0 must be sufficiently rich to effectively
represent the dynamical system described by (1). This prop-
erty is commonly referred to as persistently exciting.

Definition 1 ([3]): A signal U0 is said to be persistently
exciting of order l when

U0 =


u0 u1 · · · ut−l
u1 u2 · · · ut−l+1
...

...
. . .

...
ul−1 ul · · · ut−1

 (4)

has full rank ml. ■

The following lemma is also useful for determining the
persistent excitation of a system.

Lemma 1 ([3]): If the system (1) is controllable and U0
is persistently exciting of order n+1, then

rank(D) = n+m, (5)

where
D ≜

[
U0
X0

]
. (6)

■

In [2], the authors introduce a policy parametrization based
on the sample covariance of the data, defined as:

Φ ≜
1
t
DD⊤ =

[
U0D

⊤/t
X0D

⊤/t

]
=

[
U0
X0

]
. (7)

Defining V ∈ R(n+m)×n as the solution to:[
K
In

]
= ΦV, (8)

then, the data-driven LQR optimization problem can be
reformulated as:

min
V,ΣΣΣV⪰0

C(V) = Tr
((

Q+V⊤U⊤
0 RU0V

)
ΣΣΣV

)
subject to ΣΣΣV = In +X1VΣΣΣVV⊤X⊤

1 ,

X0V = In.

(9)

Since the dimension of V is independent of the number
of samples, t, this formulation is particularly advantageous
in adaptive design strategies where the sample size grows
linearly. In the DeePO algorithm, starting from an initial
feasible solution Kt , the feedback gain evolves iteratively
via a gradient descent approach to reach the optimal solution
K∗. Since both xi → 0 and Ki → K may compromise the full
rank condition of Φ, a probing noise ei is added to the control
input in DeePO, resulting in ui =Kixi+ei. In asymptotically
stable LTI systems, the system naturally drives the state
xi towards equilibrium as time progresses. However, when
probing noise is added to the input signal to maintain
persistent excitation, the noise introduces high-frequency
components into the control input. These high-frequency
components can interact with the feedback dynamics, caus-
ing rapid oscillations or fluctuations in the control signal
and, consequently, the system state. States perturbations is
particularly problematic in practical implementations, as it
can lead to actuator wear, increased energy consumption,
and degraded overall system performance.



We propose Perturbation-Free DeePO (PFDeePO) to ad-
dress the aforementioned drawbacks. The modification we
propose to the original DeePO algorithm is summarized in
the following.

Algorithm 1 Perturbations-free DeePO (PFDeePO)
Require: U0, X0, X1, Kt , γ > 0, δ > 0, and η > 0.
Start
i = t.
∆K = (δ +1) ·1m×n.
while the stop criterion is not satisfied, do:

if ∥∆K∥> δ or ∥xi∥ ≤ γ

Apply ui = Kixi and observe xi+1.
else

Find v and v that ensures stability.
Randomly select v ≤ vi ≤ v.
Apply ui = viKixi and observe xi+1.

End if
if ∥xi∥> γ

Update X0 by X0 = [X0,xi].
Update X1 by X1 = [X1,xi+1].
Update U0 by U0 = [U0,ui].

Vi+1 = Φ
−1
i+1

[
Ki

In

]
.

V′
i+1 = Vi+1 −ηΠX0

∇̂C.
Update the control gain by Ki+1 = U0V′

i+1.
else

Update the control gain by Ki+1 = Ki.
End if
∆K = Ki+1 −Ki.
i = i+1.

End while
End

The main idea behind PFDeePO is to prevent conditions
that may compromise the full rank of Φ, as in the following
Theorem.

Theorem 1: Let Φi be the matrix constructed at time
step i during the execution of PFDeePO. By implementing
Algorithm 1, the minimum singular value of Φi, denoted as
σ(Φi), satisfies:

σ(Φi)> 0.

As a result, the matrix Φi attains full rank, i.e., rank(Φi) =
n+m. □
The following Lemma and Theorem, show that there exist v
and v that ensures stability.

Lemma 2: Consider matrices B ∈ Rn×m and K ∈ Rm×n,
and symmetric positive definite matrices Q ∈Rn×n and R ∈
Rm×m. Then, there exists an interval V = [v,v], where 0 <
v < 1 < v, such that

Q−KT((v−1)2BTHB+(1−2v)R
)
K ≥ 0, ∀v ∈ [v,v].

(10)
□

Theorem 2: Consider a system controlled by Algorithm
1. Let Q ∈ Rn×n and R ∈ Rm×m be given symmetric and
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Fig. 1. Evolution of the states x, using DeePO (top) and PFDeePO (bottom).

positive definite matrices, and let β ∈ (0,1). Consider the
interval [v,v], as defined in Lemma 2, such that the inequality
(10) holds. Then, the time-varying state feedback control law

uk =−vkKxk, (11)

where vk is any sequence taking values in the interval [v,v],
ensures that the origin of the closed-loop system

xk+1 = (Â− vkB̂K)xk, k = 0,1, . . . (12)

is exponentially stable. □
Figure 1 illustrates the evolution of the system states when

the open-loop controllable LTI system from [2] is used in the
numerical simulations, with

A =


−0.13 0.14 −0.29 0.28
0.48 0.09 0.41 0.30
−0.01 0.04 0.17 0.43
0.14 0.31 −0.29 −0.10

, B =


1.63 0.93
0.26 1.79
1.46 1.18
0.77 0.11

 .

(13)
At sample k = 15, a disturbance is induced in the states using
a uniform random value. As observed, once the states reach
equilibrium, PFDeePO does not introduce further perturba-
tions. In contrast, the probing noise in DeePO continuously
disturbs the states, inducing oscillations that increase control
effort.
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