
From system identification to sequence models:
a primer on Structured State-Space Models

Fabio Bonassi ˚, Per Mattsson ˚, Thomas B. Schön ˚

˚ Department of Information Technology, Uppsala University,
75105 Uppsala, Sweden. E-mail: name.surname@it.uu.se

In recent years, the machine learning community has
developed increasingly flexible and accurate models for
sequence data. Consider, for example, Transformers and
their widespread applications in large language models.
Despite their state-of-the-art performance, many of these
architectures are hindered by poor scalability with respect
to sequence length T . For example, in basic Transformers
both the computational cost and the number of parameters
scale as OpT 2q, making these models expensive and largely
overparametrized when long sequences need to be pro-
cessed. The Structured State-space Model (SSM) [1] was
proposed to overcome these limitations. A simplified SSM
architecture—depicted in Figure 1—consists in a sequence
of layers (SSL) made from a linear dynamical component, a
static nonlinearity, and a skip connection. Between layers,
linear projections or layer normalization blocks might also
be present, but they are omitted here for simplicity.

There are several reasons behind the interest in SSMs.
First, since the dynamics are linear-in-the-states, they can
be very efficiently unrolled over extremely long sequences.
By parallelizing computations (sub)linear time complexi-
ties can be achieved. Moreover, since they are recurrent
architectures, the number of learnable parameters is inde-
pendent of T , making them less prone to overparametriza-
tion. Lastly, they excel in extremely-long memory [2].

Structured State-Space Models (SSMs) build on two well-
established pillars of system identification: block-oriented
models and state-space models. From this perspective,
SSMs can be seen as deep state-space Wiener models
trained via gradient descent-based simulation error min-
imization [3]. Their effectiveness hinges on a structured
state-space formulation that enables computational ef-
ficiency during both training and inference, which is
paramount in machine learning applications. To make this
possible, SSMs address two well-known issues in state-
space identification [4]: (i) the structure and parametriza-
tion of the dynamical component, and (ii) the initial-
ization of the dynamics’ learnable parameters. In what
follows, we summarize the strategies employed by the three
main SSM architectures to address these issues.

Discrete-time Linear Recurrent Units

Liner Recurrent Units (LRU) are discrete-time SSMs
where each layer ℓ P t1, ..., Lu is described by

SSLℓ :

$

&

%

xk`1 “ Λxk ` ΓBuk, (1a)

ηk “ RepCxkq ` Duk, (1b)

yk “ σpηkq ` Fuk, (1c)

with xk P Cnx being the state, uk P Rnu the input,
ηk P Rnh the hidden output, and yk P Rny the output.

Parametrization Λ is diagonal, complex-valued, and
structurally Schur, i.e., Λ “ diagpλ1, ..., λnx

q with

λj :“ e´ exppµjq`i exppθjq. (2)

The SSL can hence learn stable, complex dynamics
(|λj | ă 1). Because the state vector is complex, the real

‹ This research was financially supported by Kjell och Märta Beijer
Foundation.

Dynamics

Skip

Fig. 1. Schematic of a general SSM.

part is extracted in the hidden output transformation (1b),
which is equivalent to enforcing the complex-conjugateness
of the state vector [3]. As shown in [2], it is paramount
to normalize the gain of state components, to ensure they
have comparable orders of magnitude. In [2] states are nor-
malized with respect to the ℓ2 gain, Γ “ diagpγ1, ..., γnx

q,

γj “

b

1 ´ |λj |2 “
a

1 ´ e´2 exppµjq, (3)

albeit the static gain γj “ 1 ´ |λj |“ 1 ´ e´ exppµjq can
alternatively be adopted. The other matrices are dense
matrices of proper dimensions: B and C are generally
complex-valued, while D and F are real-valued.

Initialization A crucial ingredient for learning accurate
SSMs, and state-space models in general [4], is the initial-
ization strategy. Orvieto et al. [2] proposed to sample the
initial eigenvalues λ1, ..., λn from a suitable circular crown
sector (see Figure 2a), from which the initial µj and θj are
computed. Ideally, such a sector should be densely sampled
(c.f. Figure 3 of [2]) by increasing the state dimension,
thus avoiding bad local minima and limiting the frequency
bias [5]. The other matrices are initialized randomly.

Efficient training The computational efficiency of LRUs
builds on two pillars. First, owing to the diagonality of Λ,
computing xk`1 given xk and uk scales linearly with nx,
which is especially important for large models. Second,
the linear dynamics of LRUs enable the computation of
the state trajectory x0:T to be parallelized across the time
dimension, 1 leading to (sub)linear scaling. This is possible
because the state update function is a binary associative
operation that allows for Parallel Scan [7].

Continuous-time diagonal reparametrization

Despite the discrete-time formulation (1) being the most
intuitive, original SSMs have often been reparametrized in
the continuous-time domain,

SSLℓ :

$

&

%

9xptq “ ΓAxptq ` ΓBuptq, (4a)

ηptq “ RepCxptqq, (4b)

yptq “ σpηptqq ` Fuptq. (4c)

Parametrization Γ is a learnable diagonal matrix with
strictly positive entries that acts as a time-scaling opera-
tor, dilating or contracting time [3; 8]. In the popular S5 ar-
chitecture [9], A is defined as a diagonal, complex-valued,
Hurwitz matrix. That is, A “ Λ “ diagpλ1, ..., λnxq, where

1 Traditional RNNs are nonlinear state-space models [6] and must be
unrolled recursively over time, i.e., xk is required to compute xk`1.
Therefore, they do not allow for parallelization across the time axis.

(a) (b)

Fig. 2. Eigenvalues initialization (a) by random sampling
in a circular crown sector versus (b) by discretizing
the HiPPO-LegS’ diagonal component with scalar Γ.

λj “ ´eµj ` ieθj . (5)

Because these models process (regularly sampled) discrete-
time signals, the continuous-time system (4) is discretized,
typically via zero-order hold or bilinear transformation,
yielding a system similar to (1). A continuous-time
parametrization is useful for two main reasons. First, it en-
ables handling sequences with varying sampling rates dur-
ing both training and inference. Second, the discretization
step has been shown [2] to induce a gain regularization,
thereby enhancing the model’s numerical conditioning.

Initialization As with LRUs, initialization is paramount.
Smith et al. [9] proposed to initialize A “ Λ with the
diagonal component of the HiPPO-LegS matrix [1]. This
matrix—projecting time-series onto a low-dimensional
space of Legendre polynomials—can be decomposed into
a complex diagonal component plus a (discarded) rank-1
component. The ZOH discretization of the resulting ΓΛ
has eigenvalues illustrated in Figure 2b. The time-scale Γ
is initialized sampling from a uniform distribution. 2

Efficient training The differentiability of the discretiza-
tion step allows these models to be trained with the same
Parallel Scan algorithm as LRUs.

Remark 1. The architecture that kickstarted the interest
in SSMs was the S4 architecture [1]. These models follow
the form of (4), with a HiPPO-LegS-like diagonal plus low-
rank A matrix which allows for an efficient simulation in
the frequency domain (via FFT) [3].

Remark 2. S4 and S5 revolved around the specific HiPPO-
LegS initialization due to its alleged long-term memory
property. While the HiPPO matrix provides a reason-
able set of initial eigenvalues—at least if Γ is properly
initialized—it is has later been shown to be not fundamen-
tal [2]. Any randomized initialization can lead to similar
(or even superior) levels of accuracy, provided that the
initial eigenvalues are neither too slow nor too fast.

Selective Structured State-space Models

A recent development are the selective SSMs (S6) which
have been proposed as part of the Mamba architecture [10].
Its dynamics can be considered Linear Input Varying
(LIV). That is, letting the subscript ruptqs denote the
instantaneous dependency on uptq, each S6 layer reads

Selective SSLℓ :

$

&

%

9xptq “ ΓruptqsΛxptq ` ΓruptqsBruptqs uptq, (6a)

ηptq “ Re
“

Cruptqs xptq
‰

, (6b)

yptq “ σpηptqq ` Fuptq. (6c)

Parametrization Let linpu,Φq be a vector-to-matrix
affine transformation of u parametrized by Φ. Then,
Γruptqs “ diag

`

softmaxplinput; ΦΓqq
˘

, Bruptqs “ linput; ΦBq,

2 Usually with support r0.001{τs, 0.1{τss, where τs is the (average)
sampling time of the training data. This ensures that the initial
eigenvalues are close enough to the unit circle, cf. Figure 2b.

and Cruptqs “ linput; ΦCq represent the input-varying sys-
tem matrices. Λ is parametrized and initialized as in
(4) and (5). This parametrization enables the system to
adaptively gate inputs (amplifying or suppressing them),
thus allowing for state reset and memory retention. These
operations are crucial in many machine learning tasks, but
are not achievable with traditional SSMs [11].

Efficient training Despite being more involved than
both the LRU (1) and S5 (4) formulations, this architec-
ture can still be trained with linear efficiency via the Paral-
lel Scan algorithm. Achieving this required the hardware-
aware CUDA implementation in [10], which was crucial in
mitigating GPU bandwidth bottlenecks.

Discussion

While SSMs are closely related to classical state-space
models, novel factors have contributed to their recent
success. First, their depth enables more complex dynamics
to be learned. Second, the use of carefully chosen initial-
ization strategies, which select eigenvalues that are neither
too slow, nor too fast. Combined with the large number
of states typically employed, this results in rich dynamics.
Lastly, and most importantly, the model structures and
training strategies are tailored for extreme computational
scalability, supported by open, GPU-optimized implemen-
tations, which are essential in modern machine learning.

Despite these advantages, several open problems remain,
where we believe that the control community could offer
valuable insights. Among them is the SSM’s frequency
bias [5], which leads to underfitting of components at
higher frequencies than the fastest initial eigenvalue. More-
over, the discussed parametrization are non-minimal, and
thus not invariant to coordinate transformations. Con-
versely, minimal canonical forms are computationally inef-
ficient due to the increased cost of dense matrix product.

REFERENCES

[1] A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences
with structured state spaces,” in The Tenth International
Conference on Learning Representations, 2022.

[2] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre,
R. Pascanu, and S. De, “Resurrecting recurrent neural net-
works for long sequences,” International Conference on Ma-
chine Learning, vol. abs/2303.06349, pp. 26670–26698, 2023.

[3] F. Bonassi, C. Andersson, P. Mattsson, and T. B. Schön,
“Structured state-space models are deep wiener models,” in 20th
IFAC Symposium on System Identification (SYSID), 2024.

[4] L. Ljung, System identification: Theory for the user. Prentice
Hall information and system sciences series, Prentice Hall, 1998.

[5] A. Yu, D. Lyu, S. H. Lim, M. W. Mahoney, and N. B. Erichson,
“Tuning frequency bias of state space models,” in The Thir-
teenth International Conference on Learning Representations,
2025.

[6] F. Bonassi, M. Farina, J. Xie, and R. Scattolini, “On recurrent
neural networks for learning-based control: recent results and
ideas for future developments,” Journal of Process Control,
vol. 114, pp. 92–104, 2022.

[7] G. E. Blelloch, “Prefix sums and their applications,” 1990.
[8] J. Weigand, G. I. Beintema, J. Ulmen, D. Görges, R. Tóth,

M. Schoukens, and M. Ruskowski, “State derivative normal-
ization for continuous-time deep neural networks,” IFAC-
PapersOnLine, vol. 58, no. 15, pp. 253–258, 2024.

[9] J. T. H. Smith, A. Warrington, and S. W. Linderman, “Simpli-
fied state space layers for sequence modeling,” in The Eleventh
International Conference on Learning Representations, 2023.

[10] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling
with selective state spaces,” in First Conference on Language
Modeling, 2024.

[11] W. Merrill, J. Petty, and A. Sabharwal, “The illusion of state
in state-space models,” in 41st International Conference on
Machine Learning, 2024.

