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Linköping University, Sweden
fredrik.gustafsson@liu.se

Gustaf Hendeby
Department of Electrical Engineering
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I. ABSTRACT

This work is about an odd behavior which can occur in the
particle filter (PF). Typically, the more particles are used in the
filter, the better the results are, and as the number of particles
approaches infinity, the results become optimal. We are instead
interested in a case where the error at first increases, meaning
that more computation is used to get a worse result.

II. INTRODUCTION

The PF is a useful filter for estimating the state in many
nonlinear systems of the type

xk+1 = f(xk) +Gwk (1a)
yk = h(xk) + vk, (1b)

where xk ∈ Rnx , yk ∈ Rny , f and h are functions
Rnx → Rnx and Rnx → Rny , respectively, and wk and vk are
noises of dimensions nx and ny , respectively, and with known
probability distributions [1], [2].

The filter works by using N samples, referred to as particles
and sequentially updating them based on a proposal, and a
weighting function. For this work, the bootstrap particle filter
is analyzed. In order to keep the particles in the region of
interest, the particles are also resampled at every iteration (with
probability of selection proportional to their weights).

There have been plenty of surveys and tutorials published on
the PF, and they all state that it converges to the true posterior
distribution as N goes to infinity [3], [4]. Less is known
about the results for lower numbers of particles. Based on the
convergence at infinite particles and on the fact that the method
is based around approximating the probability distribution with
a number of samples, the expectation would be that the more
particles one uses, the better results one can expect. This is
also common knowledge among practitioners.

This work is instead interested in a category of systems for
which this does not hold and the error of the estimate instead
initially becomes worse as more particles are added.

III. ILLUSTRATIVE EXAMPLE

To highlight this, we focus on two systems

System 1:

xk+1 =

(
0.6 −1
0 0.5

)
︸ ︷︷ ︸

F1

xk +

(
1
1

)
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G

wk (2a)
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1 0

)︸ ︷︷ ︸
H

xk + vk, (2b)

System 2:

xk+1 =

(
0.6 1
0 0.5

)
︸ ︷︷ ︸

F2

xk +

(
1
1

)
︸︷︷︸
G

wk (3a)

yk =
(
1 0

)︸ ︷︷ ︸
H

xk + vk, (3b)

where wk and vk are assumed Gaussian with zero mean and
variance 1 and 0.2 respectively. Both systems are stable, and
even have the same poles 0.6 and 0.5. A practitioner might
notice that the measurement noise is low which is generally
not good for the standard PF. Further, the process noise only
affects part of the state. While this might cause issues, there
are so far no reasons to believe that the above understanding
of the PF would break.

Simulating these systems for different numbers of particles
results in Fig. 1. While the results for system 2 show the
expected behavior, with the error quickly decreasing and
approaching the optimal estimate, here given by the Kalman
filter, the results for system 1 show an entirely different behav-
ior. There, we can see that the error markedly increases for low
numbers of particles before finally decreasing and approaching
the optimal estimate at about 10000 particles. Note that this
system also requires a significantly larger amount of particles
to get a good estimate. These differences can be described by
what is here referred to as a projected instability.

IV. PROJECTED INSTABILITY

Assume a system of the form (1). Next, assume there is
state noise w̌

(i)
k that propagates the current particle x̌

(i)
k to a

new particle
x̌
(i)
k+1 = f(x̌

(i)
k ) +Gw̌

(i)
k , (4)

that gives a perfect fit to the measurement

yk+1 = h(x̌
(i)
k+1), (5)
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Fig. 1: A comparison of the MSE for the two studied systems,
averaged over x1 and x2. The green line is the KF MSE.

or, if no such solution exists, one for which the norm of the
difference is as small as possible.

The system contains a projected instability if during this
process some part of the state will increase over time. For the
linear case

xk+1 = Fxk +Gwk

yk = Hxk + vk,

this can be relatively easily computed as

F̄ = F −G(HG)†HF,

containing eigenvalues outside the unit circle. Looking again
at the example systems, we can see that for system 1 F̄ has an
eigenvalue in 1.5, meaning that it has a projected instability,
while for system 2, the eigenvalues of F̄ are −0.5 and 0,
meaning that it does not contain a projected instability.

V. SIMULATION STUDY

To make the connection more clear between the projected
instability and the MSE increasing when adding more parti-
cles, 1000 systems with maximum eigenvalues of F̄ between
0.5 and 2 were randomized and categorized based on if the
error increased or not. The result can be seen in Fig. 2. Note
that the red dots represent systems where the particle filter
failed completely, meaning that no particles were even close to
the measurements (all weights became 0). The y-axis displays
the magnitude of the process noise (the covariance of wk).

First off, it is clear that, independently of the size of
Q, no PF displays the behavior or diverges for a system
not containing a projected instability. Secondly, while this

Fig. 2: The PF behaviors for various simulated systems

behavior is most commonly found in systems with a large
process noise, it is also possible for it to occur in systems
with a more normal process noise. Finally, for systems where
λ(F̄ ) > 1, increasing the size of Q or further increasing the
eigenvalue of F̄ results in first the studied behavior to increase
in likelihood, and then in the likelihood of the filter diverging
completely to increase.

VI. CONNECTION TO ZEROES

As a final point, it can be shown that the eigenvalues of F̄
are the same as the zeros of the transfer function from wk−1

to yk, when the difference of the degree of the numerator
and the denominator of the transfer function is 1. With some
minor changes, similar connections can be done between a
projected instability and the zeroes of the transfer function
when the difference in degree is larger than 1. This means
that the projected instability can also be interpreted as a non-
minimum-phase problem.

VII. CONCLUSION

We have here shown that a system containing a projected
instability (or equivalently, a non-minimum phase) can cause
issues for the PF, and can even result in the error increasing as
the number of particles increases. A second way of viewing
this is that if a system contains a projected instability, it is
likely that significantly more particles will be needed to get a
good estimate, as that is the remedy to both the error increasing
(for system 1, about 10000 particles are needed), or for the
filter diverging entirely.
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