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Abstract— This paper addresses the bipartite consensus-
control problem in open multi-agent systems containing both
cooperative and antagonistic interactions. We represent the
system as a switched system interconnected over a dynamic
signed graph. Using the signed edge-based agreement protocol
and constructing strict Lyapunov functions for signed edge-
Laplacian matrices with multiple zero eigenvalues, we establish
global asymptotic stability of the bipartite consensus control.

I. INTRODUCTION

Open multi-agent systems (OMAS) are networks where
agents and edges can dynamically be added to or removed
from the system. They naturally arise in applications such as
social networks [1], in sensor-based robotic systems [2], and
in distributed computation. In most of the literature, agents
are assumed to cooperate, but many real-world scenarios
involve antagonistic behaviors [3]. A common framework
for capturing both cooperation and antagonism is that of
signed graphs, where edges represent positive (cooperative)
or negative (antagonistic) interactions.

In this work, we study the bipartite consensus of OMAS
over undirected signed graphs. To the best of our knowl-
edge, this is the first attempt to address this problem. We
consider systems where new nodes and edges can be added,
and interconnections may switch between cooperation and
antagonism. This work reflects real-world scenarios such
as social networks and robotic networks. We study OMAS
over dynamic signed graphs by modeling them as switched
systems [4]. For first-order systems, we establish global
asymptotic stability of the bipartite consensus set using
Lyapunov’s direct method, reformulating the problem in
terms of synchronization errors in signed edge coordinates.
Building on [5], we extend Lyapunov-based analysis to edge
Laplacians with multiple zero eigenvalues. Our main contri-
butions are the construction of strict Lyapunov functions and
analysis of how node and edge additions affect convergence.

II. PRELIMINARIES ON SIGNED GRAPHS

Let Gs = (V, E) be a signed graph with node set V and
edge set E . Each edge has a sign: positive (cooperative)
or negative (antagonistic). The adjacency matrix A = [aij ]
satisfies aij ̸= 0 if (νj , νi) ∈ E , with aij > 0 or aij <
0 depending on the interaction. The graph is structurally
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balanced (SB) if its nodes can be partitioned into two disjoint
sets such that intra-group edges are positive and inter-group
edges are negative; otherwise, it is structurally unbalanced
(SUB). The signed incidence matrix Es ∈ RN×M of Gs,
containing N nodes and M edges, is defined as [Es]ik = +1
if νi is the initial node of εk, [Es]ik = −1 if νi, νj are
cooperative and νi is the terminal node of εk, [Es]ik = +1
if νi, νj are competitive and νi is the terminal node of εk,
and [Es]ik = 0 otherwise, where εk is the arbitrarily oriented
edge interconnecting nodes νi and νj , k ≤ M, i, j ≤ N .
The Laplacian matrix Ls ∈ RN×N and the edge Laplacian
matrix Les ∈ RM×M of an undirected signed graph Gs can
be expressed as Ls = EsE

⊤
s , Les = E⊤

s Es.

III. MODEL AND PROBLEM FORMULATION

Let σ : R≥0 → P be the switching signal associated with
topology changes, where P := {1, 2, . . . , s} represents the
set of s possible switching modes. Each mode of the system
is denoted by ϕ ∈ P , with ϕ = σ(τ) for τ ∈ [tl, tl+1), where
tl and tl+1 are consecutive switching instants.

Assumption 1: The total number of possible switching
modes is finite, that is, card(P) < ∞.
At each mode ϕ ∈ P , the OMAS consists of Nϕ agents
modeled by

ẋi = ui, i ∈ {1, 2, . . . , Nϕ}, (1)

where xi ∈ R is the state and ui ∈ R is the control input.
The agents interact on a dynamic signed graph Gsϕ with Nϕ

nodes and Mϕ edges, and the control law is

ui = −k1

Nϕ∑
j=1

|aϕij
|
[
xi − sign(aϕij

)xj

]
, (2)

where k1 > 0 and Aϕ = [aϕij
] is the adjacency matrix with

aϕij
∈ {0,±1}.

Assumption 2: The initial signed graph contains a span-
ning tree.

Under Assumption 2, the achievable control ob-
jective for (1) interconnected over an SB graph is
to ensure agents achieve bipartite consensus, that is,
limt→∞

[
xi(t)− sign(aϕij )xj(t)

]
= 0, ∀i, j ≤ Nϕ. If the

considered graph is SUB, the achievable control objective
under Assumption 2 for (1) is trivial consensus, that is,
limt→∞ xi(t) = 0, ∀i ≤ Nϕ. The control objectives for (1)
can also be expressed in terms of the synchronization errors,
defined as ek = xi − sign(aϕij )xj , k = (νj , νi) ∈ Eϕ,
where k ≤ Mϕ denotes the index of the interconnection
between the jth and ith agents, and is equivalent to

lim
t→∞

ek(t) = 0, ∀k ≤ Mϕ. (3)



IV. LYAPUNOV EQUATION FOR SIGNED LAPLACIANS

To establish bipartite consensus of OMAS over signed
graphs, we construct strict Lyapunov functions in the space
of synchronization errors.

Theorem 1: Let Gs be a signed graph containing N agents
interconnected by M edges, and let Les be the associated
edge Laplacian. If the graph Gs is a spanning tree, then for
any Q ∈ R(N−1)×(N−1), Q = Q⊤ > 0, there exists a matrix
P ∈ R(N−1)×(N−1), P = P⊤ > 0 such that

PLes + L⊤
esP = Q. (4)

Theorem 2: Let Gs be a signed undirected graph with N
nodes and M edges, and let Les be the associated edge
Laplacian, which contains ξ zero eigenvalues. Then the
following are equivalent:

(i) Gs contains a spanning tree,
(ii) for any Q ∈ RM×M , Q = Q⊤ > 0 and for any

{α1, α2, . . . , αξ} with αi > 0, there exists a matrix
P (αi) ∈ RM×M , P = P⊤ > 0 such that

PLes =
1

2

[
Q−

ξ∑
i=1

αi(Pvriv
⊤
li + vliv

⊤
riP )

]
, (5)

where vri , vli ∈ RN are, respectively, the right and left
eigenvectors of Les associated with the ith 0 eigenvalue.

Moreover, if the signed graph is SB, ξ = M −N + 1, and
ξ = M −N otherwise.

V. BIPARTITE CONSENSUS ON OMAS
At each mode ϕ ∈ P , we have

eϕ = E⊤
sϕ
x, uϕ = −k1Esϕeϕ. (6)

The closed-loop system for the error dynamics is given as

ėϕ(t) = −k1Lesϕ
eϕ(t), t ∈ [tl, tl+1), (7a)

eϕ(t
+
l ) = Ξϕ,ϕ̂eϕ̂(t

−
l ) + Φl, t = tl. (7b)

Theorem 3: Consider the OMAS (1), under Assumption
2, in closed loop with the switching control law (6). Let
ϕ, ϕ̂ ∈ P be two consecutive modes.

• Then, if the switching signal σ admits an average dwell
time satisfying τϕ,ϕ̂ ≥ ln(Ωϕ,ϕ̂)

γϕ
, where Ωϕ,ϕ̂ and γϕ

are positive constants, the origin of the closed-loop
system (7a)–(7b) is asymptotically practically stable for
all initial conditions.

• Under Assumption 1, the origin of the closed-loop sys-
tem (7a) is globally asymptotically stable. Furthermore,
let Gsϕ̄ be the signed graph in the last switching mode
ϕ̄. If Gsϕ̄ is SB, then agents achieve bipartite consensus.
If Gsϕ̄ is SUB, then agents achieve trivial consensus.

VI. SIMULATION RESULTS

To illustrate our theoretical results, we simulate a system
of multi-wheeled mobile robots modeled as unicycles. We
apply a feedback linearizing control that redefines each
robot’s dynamics in terms of the position of a point offset by
a fixed distance from the robot’s center. After the last switch,
the graph G6 is SB, allowing the agents to achieve bipartite
consensus. The peaks on Figure 3 represent the addition of
new edges or sign changes in the interconnections.
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Fig. 1: Black lines represent cooperative interactions, and
dashed red lines represent antagonistic interactions.
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Fig. 2: Evolution of the trajectories of the agents’ positions.
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Fig. 3: Evolution of the trajectories of the edges.
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