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Abstract—The increasing complexity of mobile networks ne-
cessitates intelligent and dynamic control strategies for efficient
and energy-conserving management. We propose a world model-
based approach for network control, trained on pre-collected
network data. This method enables adaptive configuration of
crucial parameters without manual tuning. We demonstrate
its effectiveness by evaluating predictions on real data and
simulating closed-loop control of a 5G network energy-saving
feature. Our results show improved performance in balancing
energy savings with quality of service compared to traditional
methods and reinforcement learning approaches.

I. INTRODUCTION

Rapid growth in the usage, density, and complexity of
mobile networks poses significant challenges to operators in
terms of management and energy efficiency. With rising energy
costs and sustainability goals, optimizing network configura-
tion has become crucial. Automated network configuration
solutions have the potential to enhance quality of service,
reduce manual operations and operational costs, and save
energy by intelligently managing resources based on varying
demands. However, optimal control of the configuration pa-
rameters is challenging due to hard-to-model factors such as
network usage and radio propagation conditions, and the scale
of networks that involve thousands of base stations (BSs). This
work focuses on the example of controlling the sleep state of
capacity carriers, a key aspect of energy management in mo-
bile networks that requires balancing hardware deactivation for
energy savings with maintaining sufficient quality of service.

Previous works have addressed this problem through
hand-engineered strategies, optimization algorithms, and re-
inforcement learning (RL) for specific parameters [1]. Hand-
engineered strategies consist of rule-based methods based on
expert knowledge of the system and often lack adaptability to
site-specific information. Optimization methods with mathe-
matical models of the network and user behavior often resort to
simplifying assumptions to reduce computational costs. RL has
been shown to be promising in antenna tilt configuration [2]
and energy efficiency optimization [3], [4]. However, it re-
quires extensive training using network simulators or offline
data and often needs to be retrained when changing objectives.

Our approach employs model-based planning by learning a
world model (WM) from available 5G mobile network data.
Data-driven world WMs have been extensively studied in
model-based RL to increase sample efficiency and long-term
planning in robotics and game environments [5], [6]. Their
direct application to existing network data however, can lead to
models insensitive to actions since exploratory, diverse actions
might be unsafe for the live network. Here, we propose a
model architecture that mitigates data coverage issues by better
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Fig. 1. Illustration of our capacity cell control problem. Mobile networks is
composed of different frequency band covering the same area, we control the
on/off state of one or more LTE frequency band.

feature modeling. The resulting action-sensitive model can be
used with an online planner for energy-saving applications. In
contrast to RL, online planning with a WM allows a network
operator to change the cost function without retraining. We
evaluate the prediction capabilities of our model on real data
from a 5G network and then demonstrate its closed loop
performance when used with a cross entropy planner in a
simulation environment. We show that the planning method
outperforms RL alternatives trained in simulation and a hand-
engineered baseline. These initial results establish a first
step towards expanding the WM-based control paradigm in
network automation, improving how modern networks are
managed for optimal service quality and energy efficiency.

II. PROPOSED APPROACH

Mobile networks comprise multiple BSs, each equipped
with antennas operating on various carrier frequencies to serve
the same sectors, as seen in Fig. 1. This redundancy ensures
sufficient bandwidth during high-demand periods. During low-
demand periods, disabling redundant frequencies and their
hardware reduces energy consumption. We focus on optimiz-
ing the on/off control of these frequencies, which can be
managed by a centralized system at up to 15-minute intervals,
with faster local systems handling unforeseen traffic spikes.

We represent the network as a dynamical system and
formulate the problem of saving energy while maintaining
service requirements as a model predictive controller (MPC):

min
ut,...,ut+H−1

J =

H−1∑
i=0

ut+i (1)

s.t. xt+i+1 = f(xt+i, ut+i,Ht+i), i = 0 . . . H − 1
(2)

g(xt+i, ut+i) ≤ 0, i = 0 . . . H − 1, (3)

where ut ∈ {0, 1}n represents the on/off state of n carriers, xt

is the predicted state of the network, g represents a constraint
function, f is the dynamics model, and Ht is a history of the
past state and actions up to t.



The network state xt comprises key performance indi-
cators for each frequency band, including resource utiliza-
tion percentage, aggregated user throughput, and traffic vol-
ume. We implement a simple service requirement constraint
g(xt, ut) = 1[ut=1]1[xt[throughput LTE Coverage]≤50Mbps], ensuring
that the average user throughput in coverage frequencies
remains above a threshold.

Training the WM: The WM is trained to predict the future
states of the network given different network configuration
parameters. It is trained from an existing dataset using teacher
forcing. Standard WM training uses regression with a mean
squared error loss [5], however, due to the discontinuous nature
of the on/off action we developed a multi-task sequence-to-
sequence architecture handling continuous, binary, and semi-
continuous features explicitly.

Given input sequence x1, ..., xT and action sequence
u1, ..., uT+H−1, where T is the input history length and H is
the prediction horizon, the model predicts Ŷ = x̂2, ..., x̂T+H ,
with auto-regressive predictions for steps T+2 to T+H . States
and actions are embedded into a common latent space and
processed by a sequence-to-sequence backbone (e.g., GPT2
transformer or LSTM). Task-specific output heads produce
predictions for each feature type, with semi-continuous pre-
dictions conditioned on binary activations.

The model is trained end-to-end using teacher forcing to
optimize a weighted multi-task loss function:

L =

T+H∑
t=1

[λcLc(xt, x̂t) + λbLb(xt, x̂t) + λsLsc(xt, x̂t)] (4)

where Lc, Lb, and Lsc represent the losses for continuous,
binary, and semi-continuous features, respectively, and λc, λb,
and λs are the corresponding weight factors. We found that
this loss function and separate action embeddings are key for
ensuring control input sensitivity and correct predictions of
the discontinuous features. The WM can then be used for
planning. We solve Eq. (3) using the trained model to represent
f with a cross entropy planner [5] and a scalar cost function
that rewards sleep and penalizes constraints violations.

III. RESULTS

We evaluate the WM’s capabilities to predict over ex-
tended horizons, and show in Section III that the multi-task
loss approach provides better accuracy compared to standard
regression models. To assess the model’s ability to predict
counterfactual actions, we replay network usage and KPI data
with modified actions proposed by the cross-entropy planner.
The multi-task model correctly predicts the action effect,
predicting zero utilization when the carrier is turned off, while
regression models fail to account for these unseen actions.

Closed-loop performance is evaluated in simulation through
4-day episodes for 5 networks with varying traffic patterns. We
compare our approach with a rule-based baseline (turning off
during the night according to fixed rules) and a soft actor-
critic (SAC) agent in Table I. The return represents a scalar
combination of J and g. The cross-entropy method (CEM)
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Fig. 2. Left: Difference in MSE on a test dataset between the regression
models and multi-task models for different sequence to sequence back-bones
as the prediction horizon increases. Tight: Predictions of the world model
when providing counterfactual actions.

with our WM outperforms the baseline, achieving more sleep
time and fewer constraint violations. While the RL agent
shows competitive performance, it requires more extensive
reward engineering and simulation data for training.

TABLE I
CLOSED LOOP PERFORMANCE IN SIMULATION

policy sleep per day (h) constraint violation (%) return

baseline 3.12 2.19 45.7
CEM 7.25 0.33 57.4
SAC 5.90 1.70 51.1

IV. CONCLUSION

In this abstract, we present initial steps towards controlling
mobile network parameters by planning with a world model.
We show that we can train controllable models from real data
even with limited action coverage and demonstrate that they
can be used with planning algorithms such as CEM. Future
work will consist of evaluating more complex cost functions
that require long-term planning. We will iterate on the model
architecture to extend the control actions and observability of
the existing model, as well as add uncertainty modeling.
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