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Abstract— We propose a distributed Kalman-like observer
for cooperative state estimation in multi-agent systems. By
replacing the process covariance matrix with a forgetting factor,
the observer enables distributed information matrix propagation
while maintaining stability. The correction term is computed
dynamically in a distributed manner, avoiding centralized matrix
inversion. Unlike existing methods, our approach preserves inter-
agent coupling and only requires joint observability, offering
flexibility in sensing configurations. Stability guarantees are
provided, and numerical simulations in a cooperative localization
scenario show the effectiveness of the method in state estimation.

I. INTRODUCTION

Cooperative state estimation is fundamental in multi-agent
systems such as robotic networks and distributed monitoring,
enabling agents to estimate their states using local and
relative measurements. Key challenges include scalability,
communication efficiency, and ensuring stability. While
distributed Kalman filters (DKFs) are widely used, especially
in robotics and power systems [1]–[3], existing variants often
lack formal stability guarantees and discard useful inter-agent
information to enable distributed computation.

In this work, we propose a distributed observer inspired
by Kalman-like observers, which, in the Riccati equation,
substitute the process covariance matrix with a forgetting
factor. This formulation enables the distributed propagation
of the information matrix dynamics, enabling each agent
to compute its correction term by dynamically solving a
linear equation in a distributed manner which only requires
communication between neighboring agents. Our observer
guarantees uniform global exponential convergence under
joint observability assumptions and a proper time-scale
separation between the matrix dynamic inversion and the
system dynamics.

We validate the proposed method through cooperative
localization simulations.

II. SYSTEM MODELING

Agents dynamic model: Consider a multi-agent system
composed of N agents with decoupled linear dynamics:

ẋi = Ai(t)xi +Bi(t)ui ∀i ∈ {1, ..., N} (1)
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with state xi ∈ Rdi , input ui ∈ Rmi , where we made explicit
the time dependency of the matrices Ai ∈ Rdi×di and Bi ∈
Rdi×mi .

Agents interaction model: agents interact through two
distinct graphs: a static directed sensing graph Gs = (V, Es),
where a directed edge (i, j) ∈ Es indicates that agent i can
sense agent j, and an undirected communication graph Gc =
(V, Ec), which allows bidirectional information exchange.

Measurement model: Each agent can collect:
• Private measurements of its own state:

yp
i = δiH

p
i (t)xi δi ∈ {0, 1}

• Relative measurements of neighboring agents’ states:

yr
ij = Hr

iji(t)xi +Hr
ijj(t)xj , for (i, j) ∈ Es

A common special case is when relative outputs depend
only on the relative state:

yr
ij = Hr

ij(t)(xj − xi)

The collective quantities are defined as:

x =
[
x⊤
1 · · · x⊤

N

]⊤ ∈ RNd

u =
[
u⊤
1 · · · u⊤

N

]⊤ ∈ RNm

yp =
[
yp⊤
1 · · · yp⊤

N

]⊤ ∈ RNqp

yr =
[
yr⊤
1 · · · yr⊤

M

]⊤ ∈ RMqr

where M = |Es| is the number of relative measurements.
We define the following matrices:
• A(t) = blkdiag(A1(t), . . . ,AN (t))
• B(t) = blkdiag(B1(t), . . . ,BN (t))
• Hp(t) = blkdiag(Hp

1 (t), . . . ,H
p
N (t))

• ∆ = blkdiag(δ1Id, . . . , δNId)
• Hr(t): sparse matrix reflecting the sensing graph’s

incidence pattern
In the case where all relative outputs follow the form

yr
ij = Hr

ij(t)(xj − xi), the output can be written as:

yr = blkdiag(Hr
1 (t), . . . ,H

r
M (t))E⊤

d x

where Ed = E ⊗ Id and E is the incidence matrix of the
sensing graph.

Compact system model:

ẋ = A(t)x+B(t)u

y =

[
yp

yr

]
=

[
Hp(t)∆
Hr(t)

]
︸ ︷︷ ︸

H(t)

x



III. DISTRIBUTED KALMAN-LIKE OBSERVER

Kalman-Bucy Filter (Centralized).: The continuous-
time Kalman filter, known as the Kalman-Bucy filter, is given
by:

˙̂x = Ax̂+Bu+ PH⊤R−1(y −Hx̂)

Ṗ = AP + PA⊤ +Q− PH⊤R−1HP
(2)

where P is the error covariance, R is the measurement
noise covariance (block-diagonal), and Q is the process noise
covariance (also block-diagonal).

Challenges in Distributed Implementation.: Distributed
computation of the Kalman filter is challenging because:

• Certain terms (e.g., AP , H⊤R−1H) can preserve
sparsity if P (0) has a structured form (e.g., block-
diagonal or Laplacian-like).

• The product PH⊤R−1HP destroys sparsity, making
P (t) fully dense over time.
Information Filter Reformulation.: To mitigate densifi-

cation, we use the information form with S = P−1:
˙̂x = Ax̂+Bu+ S−1H⊤R−1(y −Hx̂)

Ṡ = −A⊤S − SA− SQS +H⊤R−1H
(3)

This form is closer to be sparse, but:
• The term SQS is not computable in a distributed way.
• Inversion of S is also non-distributable, even if S is

sparse.
Kalman-Like Observers with Forgetting Factor.: To

avoid modeling process noise explicitly, we set Q = 0 and
introduce a forgetting factor γ > 0:

Ṡ = −
(
A+ γ

2 I
)⊤

S − S
(
A+ γ

2 I
)
+H⊤R−1H (4)

This ensures exponential decay of older information and pre-
serves sparsity over time. When using relative measurements,
the resulting matrix Ṡ includes a matrix-weighted Laplacian
structure.

Distributed Approximation of S−1.: To compute the
correction term S−1H⊤R−1(y−Hx̂) in a distributed way,
we use a dynamic approximation based on continuous-time
Richardson iteration. Define:

ξ := S−1H⊤R−1(y −Hx̂) (5)

We then use:
˙̂x = Ax̂+Bu+ ξ̂

µ
˙̂
ξ = −(Sξ̂ −H⊤R−1(y −Hx̂))

Ṡ = −
(
A+ γ

2 I
)⊤

S − S
(
A+ γ

2 I
)
+H⊤R−1H

(6)

where µ > 0 controls the convergence rate of the approxima-
tion.

Distributed Implementation.: Each agent i updates its
local variables x̂i, ξ̂i, and matrix blocks Sij using local
information and messages from its neighbors:

• Measurements: yr
ji

• Neighbor estimates: x̂j , ξ̂j

Theorem 1 (Exponential Stability of the Interconnected
System). Under persistency of excitation assumptions and

technical assumptions of boundedness of system matrices and
their derivatives, for sufficiently small µ, the estimation error
is uniformly exponentially stable.

IV. SIMULATION RESULTS

The proposed distributed Kalman-like observer is evaluated
in a cooperative localization task with N = 15 mobile
robots and A = 4 anchors with access to absolute position
measurements. Robots follow double integrator dynamics and
rely on relative position measurements for state estimation.
Anchors provide additional absolute position data.

Simulation results show that:
• The estimated correction term tracks the ideal one

accurately (Fig. 2).
• The overall estimation error converges to zero (Fig. 3).
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Fig. 1: Initial configuration of the real robots (circle markers) and
estimated robots (cross markers). The red circles represent the
anchors and their initial estimate is shown with a triangle marker
around. The network communication graph is also shown.

Fig. 2: Norm of the error on the correction term, i.e. ||ξ̃||.
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Fig. 3: Norm of the estimation error on the full state, i.e. ||x̃||.
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