
Motion Planning in Non-Convex Corridors: A Guided MPC Approach

Bernhard Wullt1, Per Mattsson2, Thomas B. Schön2, Mikeal Norrlöf1

I. INTRODUCTION

Motion planning is an important problem in robotics,
arising in many applications such as bin picking, autonomous
driving, etc. We present a novel motion planner for cluttered
environments, where corridor planning and model predictive
control (MPC) are integrated into one solution. The corridor
planner’s task is to return a non-convex collision-free region
that connects a given start and goal configuration. This region
is referred to as a corridor and is constructed using a signed
distance function (SDF), from which collision-free regions
can be represented as spheres. From the resulting corridor,
the MPC then controls the robot to stay within the corridor
and to reach the goal state. Our main contribution is in the
last part, i.e. how to guide the MPC within a non-convex
corridor such that it reaches a global goal state. The main
idea is to first select a sequence of spheres in the corridor
such that the future motion is feasible and to force it to a
local goal state, possibly unreachable in one time step. Our
idea is similar to [1], which also uses spheres for collision-
avoidance, but instead of selecting spheres along a corridor,
they optimize the sphere radius by a line search method
at each iteration. Furthermore, their approach requires a
reference trajectory to be tracked at each iteration, which
adds computation time. Our approach removes the need for a
reference trajectory, we only track a set-point, similar to [2].
However, the set-point is sequentially computed, therefore
allowing our solution to be used in cluttered environments.
From simulations with double integrator dynamics and ran-
domized obstacles, we observe an average computation time
of 20 ms per iteration.

A. Background

Consider a robot operating in the world space, W ⊂ R3.
The exact description of the robot body is given by
its configuration q ∈ C, where C ⊂ Rnc is the
configuration space. We define the state of the system
as x = [q⊤, q̇⊤]⊤ ∈ X ⊂ Rnx , where X is the state space,
defined as X = C × Rnc . We access the configuration and
velocity of the state using the following notation, q(x)
and q̇(x), respectively. The state evolves according to the
discrete dynamics, x+ = f(x,u), where u ∈ U ⊂ Rnc is the
robot’s control input and x+ is the state at the next time step.

The robot is surrounded by no obstacles O =
⋃no

i=1Oi,
where Oi ⊂ W . The set of points covered by the robot
body at a certain configuration is expressed as FK(q) ⊂ W .

1 ABB Robotics, Sweden.
2 Department of Information Technology, Uppsala University, Sweden.

The representation of the ith obstacle in the configuration
space is given by the set COi = {q ∈ C | B(q) ∩ Oi ̸= ∅}.
The obstacle space is formed as Co =

⋃no

i=1 COi. The
complement is referred to as the free space, Cf = C \ Co. We
define the SDF expressed in the configuration space as

ψ(q, O) =

{
−ϕ(q, O) if q ∈ Co,

ϕ(q, O) otherwise,
(1)

where ϕ : C×W 7→ R+ is a function that returns the closest
distance measured using the 2-norm, || · ||2 : Rm 7→ R+, to
the boundary of the obstacle region, ∂Co, that is

ϕ(q,O) = min
qc∈∂Co

||q− qc||2. (2)

From now on, we remove the explicit dependency of the
obstacle O, only adding it when needed. With the SDF, we
can construct a collision-free region

B(c) = {q ∈ C | ∥q− c∥2 ≤ ψ(c) }. (3)

Thus, it is a Euclidean norm ball centered around the center
point c with radius defined by the signed distance. If the
signed distance is positive, then the sphere is contained in
the free space, i.e. B(c) ⊂ Cf. In the following, we drop the
explicit dependence on the ball center.

B. Motion planning problem

Given a start state, xs ∈ X , and a goal state, xg ∈ X . The
problem is to compute a sequence of inputs, (u1, . . . ,un−1),
such that the corresponding sequence of states, (x1, . . . , xn),
starts and ends in x1 = xs and xn = xg, respectively.
Furthermore, the states are required to be collision-free
q(xi) ∈ Cf, ∀i ∈ N1:n, where N1:n is the set of integers
from 1 to n.

II. METHOD

The following section presents our suggested motion plan-
ner for static environments. Our approach is decoupled into
corridor planning and control, which we describe in the
following sections, ending with the integrated solution.

A. Corridor planning

We use Probabilistic Bubble RoadMap (PBRM) described
in [3] as corridor planner. The planner is based on Prob-
abalistic RoadMap (PRM) [4], with the difference that the
vertices in the graph consists of collision-free regions, i.e.
the sphere defined in (3), instead of points. The following
section gives a brief overview how the planner works, see [3]
for more details. The planner constructs a graph representing
the free space, which is done by distributing nv spheres that

cover as much space as possible. The edges in the graph are
formed between spheres that intersect, that is

E = {(Bi,Bj) ∈ V2 |Bi ∩ Bj ̸= ∅}. (4)

Once this is done, the planner can be queried for corridors
connecting a start and goal configuration, qs and qg. This
is done by a weighted graph search, resulting in a path,
ρ(s) : [0, 1] 7→ Cf, which passes through a subset of
the vertices. Since the edges are formed over intersecting
spheres, the path is by construction guaranteed to lie in
the free space. From the path a corridor is constructed,
P (s) = B(ρ(s)), which connects the query points, ∃(s, l) ∈
[0, 1]2, (qs,qg) ∈ (P (s),P (l)).

B. Corridor Control

Having computed a corridor, our next goal is to steer the
robot to the goal state in a receding horizon fashion. We use
a standard set-point tracking MPC defined as

min
u1,...,unh

nh+1∑
i=1

∥xi − x̃g∥2Qi
+

nh∑
i=1

∥ui∥2R (5a)

s.t. x1 = x, (5b)
xi+1 = f(xi,ui), i ∈ N1:nh

, (5c)
q̇(xnh+1) = 0, (5d)
(xi,ui) ∈ X × U , i ∈ N1:nh

, (5e)
q(xi) ∈ B⋆i , i ∈ N1:(nh+1). (5f)

In the above, our decision variables are nh control inputs.
The cost aims to pull the predicted future trajectory towards
a set-point, x̃g, which is a local goal state, while minimizing
the control inputs. The predicted future trajectory starts in
the current state (5b), evolves according to the dynamics
(5c), ends in a terminal state (5d), while respecting the
bounds on the state and control inputs (5e). Our collision-
avoidance constraint is expressed in (5f), where we enforce
each configuration to stay within a corresponding sphere.
The following sections presents how we allocate the spheres
for the predicted states and compute the local goal state to
be tracked.

1) Sphere selection: To compute the corresponding
spheres in (5f), we assume that we have access to an initial
feasible trajectory, X = (x1, . . . , xnh+1) ∈ Rnx×(nh+1). For
each state in the trajectory, xi ∈ X , we find a sphere in the
corridor that contains the state and is the furthest along the
corridor. We compute this by solving

s⋆i = max {s ∈ [0, 1] | q(xi) ∈ P (s)}, (6)

resulting in the sphere B⋆i = P (s⋆i). Repeating the process
results in the sequence of spheres, B = (B⋆1 , . . . ,B⋆nh+1).

2) Virtual goal state: To compute a virtual local goal
state, x̃g, we set its velocity to zero, q̇(x̃g) = 0. Its con-
figuration is computed by selecting the furthest point along
the path that is contained in the last sphere belonging to B.
This is computed as

sg = max {s ∈ [0, 1] | ρ(s) ∈ B⋆nh+1}, (7)

from which we compute the configuration as q(x̃g) = ρ(sg).

Algorithm 1 A receding horizon control approach to steer
a robot within a corridor to reach a goal state.

Require: ψ, xs, xg
1: x ← xs
2: X ← (x)nh+1

i=1

3: while ε < ∥x− xg∥2 do
4: P ← compute a corridor connecting x and xg
5: B ← compute spheres, Section II-B.1
6: x̃g ← compute virtual goal, Section II-B.2
7: X,U ← solve (5) with x, x̃g, B
8: apply first control in sequence, x = f(x, U1)
9: shift trajectory X

10: end while

C. Motion Planning Solution

Having presented all the necessary parts, we can now
integrate all parts into one solution, presented in Algorithm 1.
We initialize our predicted future trajectory by repeating the
start state for the whole horizon. In the online part, we
compute a corridor connecting our current state and the goal
state, line 4. Then, we compute the spheres and the virtual
goal state, line 5 and 6. Next, we solve the optimization
problem, line 7, and retrieve the optimized predicted future
trajectory with input controls. The first control input in the
sequence is applied to the system, line 8, and we end by
shifting the trajectory. By repeating the process we end up
in the goal state.

III. CONCLUSIONS

We have presented a novel motion planning solution,
where corridor planning has been integrated with MPC. The
corridor planner finds a corridor that connects the robot’s
current configuration with the goal configuration. To stay
within the corridor and reach the goal state, we select
a sequence of spheres that contain our future predicted
trajectory and compute a local goal state that is the furthest
along the path and within the last sphere. By solving a set-
point tracking MPC formulation, we steer the robot inside the
corridor to the global goal state. From simulated experiments
with linear dynamics in cluttered environments, we observe
fast execution, 20 ms on average per iteration, demonstrating
the practical usefulness of our approach.

REFERENCES

[1] T. Schoels, L. Palmieri, K. O. Arras, and M. Diehl, “An NMPC
approach using convex inner approximations for online motion planning
with guaranteed collision avoidance,” in IEEE International Conference
on Robotics and Automation (ICRA), 2020.

[2] T. Schoels, P. Rutquist, L. Palmieri, A. Zanelli, K. O. Arras, and
M. Diehl, “CIAO*: MPC-based safe motion planning in predictable
dynamic environments,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6555–
6562, 2020.

[3] B. Wullt, M. Norrlöf, P. Mattsson, and Thomas B. Schön,
“Probabilistic Bubble Roadmap.” https://arxiv.org/abs/
2502.16205, 2025.

[4] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–
580, 1996.

https://arxiv.org/abs/2502.16205
https://arxiv.org/abs/2502.16205

	Introduction
	Background
	Motion planning problem

	Method
	Corridor planning
	Corridor Control
	Sphere selection
	Virtual goal state

	Motion Planning Solution

	Conclusions
	References

