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I. INTRODUCTION

The control of large-scale safety-critical systems in a
constrained environment is a critical challenge in intelli-
gent transportation systems and Robotics, where robust and
efficient solutions are essential. This abstract presents a
novel safe control approach—Dissipative Barrier Feedback
(DBF)— and its application to address the challenge of safe
platoon formation control. Its constructive feedback control
formulation enables a simple design by combining a nominal
controller with the DBF, ensuring safety invariance as well
as stability and convergence to the desired configuration. The
abstract further exploits DBF to design a novel decentralized
safe platoon formation controller with rigorous theoretical
guarantees and practical validation through simulation stud-
ies. Additionally, an intuitive car-following example illus-
trates the nuances of the proposed approach in comparison
to Control Barrier Functions (CBFs) and Hamilton-Jacobi
(HJ) reachability, further demonstrating its effectiveness in
enabling collision avoidance and justifying its usage for safe
platoon formation.

II. DISSPATIVE BARRIER FEEDBACK FOR LARGE SCALE
SAFETY CRITICAL SYSTEMS

Consider a multi-agent system under double intergrator
dynamics {

ṗi = vi

v̇i = ui

(1)

where pi ∈ R2 and vi ∈ R2 are the position and velocity
of agent i. The concept of Dissipative Barrier Feedback
control is to design the control input as the sum of a nominal
controller with a Dissipative Barrier Feedback

ui = un
i + uc

i , (2)

where un
i is the nominal control input ensuring the asymp-

totic (or the exponential) convergence of the states (pi, vi) to
the desired trajectory. uc

i , is a Dissipative Barrier Feedback
slowing down the relative velocity of agent i in the normal
direction of the obstacles. Its effect vanishes when the rela-
tive velocity is orthogonal to the normal direction, ensuring
that agent i’s nominal motion is not altered. For a multi-
agent system operating in a free space, to guarantee inter-
agent collision avoidance, the Dissipative Barrier Feedback
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is designed as [1]

uc
i =

∑
j∈Ni

kogijϕij , (3)

where gij :=
pj−pi

∥pj−pi∥ ∈ S1 is the unit direction vector from

agent i to j, ϕij :=
ḋij

dij
is the divergent flow, dij := ∥pi −

pj∥−ϵ is the safety distance between two agent i and j with
ϵ > 0 a safe margin, and ko is a constant gain. The divergent
flow ϕij can be obtained directly from the optical flow using
visual information, or estimated from the measure of dij .

To illustrate the safety invariance principle employed in
this context, let’s consider a 2-agent system under a directed
graph (i.e., N2 = i = {j},Nj = ∅). For the sake of
simplified notation, denote d = dij , ḋ = ḋij = g⊤ij(vj −vi).
One concludes that

d̈ = −ko
ḋ

d
− α(t) (4)

where

α(t) = −
∥πgij (vi − vj)∥2

d+ ϵ
− g⊤ij(u

n
i − uj),

The safety invariance property provided by uc
i is shown in

the following lemma.
Lemma 1: Given the dynamics (4) with ko a positive

gain and α(t) a continuous and bounded function. Then for
any initial condition satisfying d(0) > 0 and ϕ(0) = ḋ(0)

d(0)
bounded, the following assertions hold:

1) d remains positive, ∀t ≥ 0.
2) d converges to zero as t → ∞ if and only if

limt→∞
∫ ⊤
0

α(τ)dτ → +∞.
3) If d converges to zero, then ḋ is bounded and con-

verges to zero, and ϕ(t) remains bounded, ∀t ≥ 0.
Furthermore, if α(t) converges to a positive constant
α0 > ϵ > 0, then ḋ

d → −α0

ko
and hence d̈ converges to

zero.
Proof of the lemma is given in [1]. This lemma shows the

safety invariance property, i.e., as long as the initial distance
d(0) is positive, d will never cross zero for all times as long
as the nominal controller un

i , the neighboring agent input uj ,
and the relative velocity vi−vj are continuous and bounded.
Moreover, since only direction and relative distance mea-
surements are required in the design of the disspative barrier
feedback, the control methodology is suitable for large-scale
safety-critical systems equipped with onboard local sensors
operating in unknown environments. Despite computational
efficiency, the proposed disspative barrier feedback offer
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Fig. 1: Platoon formation scenario in a multi-lane highway
segment at a certain time instance. The red dot indicates the
desired position for each vehicle. The red arrow indicates
the desired velocity for the platoon leader. The blue arrow
between vehicle 2 and vehicle 1 indicates the relative position
vector e2.

promises to guarantee convergence to the target configuration
without introducing local minima [1].

III. APPLICATION TO SAFE PLATOON FORMATION
CONTROL IN CONSTRAINTED SPACE

In this section, we will explore DBF to safe platoon
formation and merging control problems for a group of
Connected and Automated Vehicles in a multi-lane highway
scenario, with environmental constraints such as limited free
space with road edges.

The control objective is to design decentralized controllers
for a group of vehicles under a leader-follower interaction
topology to track the desired platoon formation while keep-
ing a safe distance between neighboring vehicles and toward
the road edges, as shown in Fig. 1

To drive the vehicle i to the desired lane while keeping a
desired distance to the forward neighboring vehicle i−1, we
decouple the control along longitude and lateral directions ρ
and η, respectively, and design the nominal controller as

un
i = k1ρρ

⊤(ẽi + νi)− k2ηη
⊤(p̃i + ṽi) + ui−1, i ≥ 2. (5)

k1 and k2 are positive gains, p̃i := pi − p∗i , ṽi := vi − v∗i ,
and ẽi := ei − e∗i = p̃i−1 − p̃i are absolute position error,
absolute velocity error and relative position error of agent i,
respectively.

To prevent collision between two neighbor vehicles i and
i− 1, the inter-vehicle safety distance

di = ∥ei∥ − r (6)

should be guaranteed all the time positive. Here, we explore
inter-agent distance projected to the longitude direction of the

road ρ: dρi := ρ⊤ei − ϵ. Since ∥ei∥ =

√
(ρ

⊤
ei)2 + (η⊤ei)2,

it is straightforward to verify that dρi > 0 implies di > 0.
Besides collision avoidance with the neighboring vehicle,

all vehicles must follow the traffic rules so the road edges
can not be exceeded. To prevent vehicles from crossing the
two road edges, we define the safety distance to the road
edges as dηi := bi− ϵ with bi the minimum distance between

the vehicle i and the two road edges

bi :=

{
η⊤pi, η⊤pi ≤ w

2 ,

w − η⊤pi, otherwise,
(7)

where w is the width of the road.
The DBF uc

i for the purpose of collision avoidance is
designed as the sum of two terms

uc
i = k3ρϕ

l
i − k4βi(t)ηϕ

η
i (8)

where ϕl
i =:

ḋρ
i

dρ
i

with ḋρi = ρ⊤νi, serving for collision avoid-

ance between neighboring agents; ϕη
i =:

ḋη
i

dη
i

for collision

avoidance against road edges where ḋηi = βi(t)η
⊤vi, and

βi(t) :=

{
1, η⊤pi ≤ w

2 ,

−1, otherwise.
(9)

Theorem 1: Consider an n-agent (n ≥ 2) system with
the dynamics (1) along with the feedback control law (2),
(5), and (8). For any safe and bounded initial conditions
(p̃i(0), ṽi(0)) such that dρi (0) > 0 and dηi (0) > 0, ϕρ

i (0)
and ϕη

i (0) are bounded, the following assertions hold ∀i ∈
V/{1}, ∀t ≥ 0:

1) the n-agent system remains safe, i.e., di(t) and dηi (t)
remains positive and ϕρ

i (t), ϕ
η
i (t), and ui are bounded,

2) the desired equilibrium point (p̃i, ṽi) = (0, 0) is
asymptotically stable.

The detailed proof of the theorem can be found in [2].

IV. SIMULATION

A comprehensive simulation results of the proposed
method can be found in [2]. In this abstract, we will focus
on the comparison with state-of-the-art optimization-based
safety control methods. For clarity and conciseness, we focus
on a simplified car-following scenario involving two vehicles
in the longitudinal direction (i.e., one-dimensional space) in
free space, rather than the full multi-agent platoon formation
in constrained space.

We compare DBF with optimization-based safe controller,
namely control barrier function and HJ reachability. Fig. 2
shows the approximated control-invariant set under same
actuator constraints. The invariant set for DBF is bigger
than for the CBF, as shown in Fig. 2. Note that safety
invariance is ensured under all the DBF, optimization-based
CBF, and HJ reachability designs, providing the same nom-
inal controller. However, the optimization-based approaches
faces challenges, particularly in large-scale systems oper-
ating within constrained environments. These challenges
include potential feasibility issues and high computational
costs associated with real-time optimization. Furthermore,
due to its optimization-based nature, analyzing the stability
and convergence toward the desired configuration becomes
more complex and demanding. In contrast, the DBF-based
approach offers a simple yet elegant solution that ensures
safety while enabling formal analysis of stability and conver-
gence. This makes it particularly well-suited for addressing
the control of large-scale systems operating in constrained
environments.
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Fig. 2: The estimated control invariant set for the car following model in (p2− p1, v2) space for different value of v1, under
same actuator constraints. Subfigure a) shows the set for CBF, subfigure b) shows the set for HJ reachability, and subfigure
c) shows the set for DBF. Observe that the safe set for lower leader velocity v1 is overlapped by that of higher v1.
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