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Abstract: This work presents a dual controller that learns the optimal server in a multi-server
queueing system under process disturbances. We formulate an optimization problem with linear
cost, linear dynamics, and an equality constraint on the dispatcher policy. A model-free, data-
driven equation is constructed to enable both policy evaluation and update.
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1. INTRODUCTION

Queueing systems find wide applications in communi-
cation networks, supply chains, and resource allocation.
Optimal control of such systems is crucial for improving
efficiency and reducing operational costs (Bertsimas and
Kim, 2023).

The optimal control of queueing systems with unknown
service rates has gained attention due to its relevance
in applications like cloud computing, where service rates
are variable and uncertain due to interruptions and
slowdowns (Choudhury et al., 2021). While traditional
approaches assume known parameters (Tassiulas and
Ephremides, 1990), recent efforts have explored learning-
based control to address this challenge (Liang and Modi-
ano, 2018; Krishnasamy et al., 2021; Stahlbuhk et al.,
2021). In this work, we adopt a dual control framework to
develop an adaptive algorithm for optimal job dispatching
under such uncertainty and disturbances

2. PROBLEM SETUP

2.1 A multi-unit processing network model

We consider a multi-unit processing network model con-
sisting of n queueing units, with jobs awaiting to be pro-
cessed at each unit. The number of external jobs arriving
at the network is a deterministic quantity denoted by λ,
to be forwarded by the dispatcher to the different units
for processing. We let [ut]i denotes the portion of jobs
routed to unit i. The units process the jobs at different
processing rates denoted by ηi > 1 for unit i ∈ {1, . . . , n}.
This setup is illustrated in Figure 1. We let the vector [xt]i
represent the number of jobs awaiting at unit i at time t,
and adhering to the following linear dynamics

[xt+1]i =
1
ηi
[xt]i + [ut]i, ηi > 1, (1)

and in aggregation across all units

xt+1 = Mxt + ut, M := diag
(
η−1
1 , . . . , η−1

n

)
. (2)

Note that according to (1), unit i possessing a large
processing rate ηi indicates that it enjoys a faster linear
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Fig. 1. An illustration of the multi-unit processing network.

convergence with a rate of 0 < η−1
i < 1. The inputs, on

the other hand, adhere to the constraints

1⊤ut = λ and ut ≥ 0 ∀t. (3)

The equality constraint on the inputs could be justified
in the sense that we would like the incoming jobs λ at
time t to be fully distributed for processing. The inequality
constraint on the other hand to signify that a job is a non-
negative quantity.

2.2 An optimal control problem

A typical performance objective is to minimize the sum
of awaiting jobs across all units. This gives rise to the
following optimization problem with a discount factor
γ ∈ (0, 1)

Minimize
∑∞

t=0
γt1⊤xt over {ut}∞t=0

subject to xt+1 = Mxt + ut, (4)

1⊤ut = λ and ut ≥ 0, ∀t.

2.3 Optimal policy for known processing rates

When the processing rates are known, problem (4) can
be solved using dynamic programming (Bellman, 1966),
leading to the Bellman equation

J(x) = min
u∈U(λ)

[
1⊤x+ γJ(Mx+ u)

]
, (5)

where U(λ) denotes the set of admissible inputs. Assuming
an affine form for the value function, J(x) = p⊤x+p0, with
p ∈ Rn

+, we obtain the solution

p0 =
γλmini(pi)

1− γ
, pi =

ηi
ηi − γ

. (6)

The optimal policy is u∗ = λei, where i = argmaxj ηj ,
indicating that jobs should be routed to the fastest server.



2.4 Model-free optimal control via Q-factor

The cost-to-go from time t under policy u, starting from
state xt, is defined as J(xt) = minu

∑∞
k=t γ

k−t1⊤xk. The
optimal Q-function (Bradtke et al., 1994) is Q(xt, ut) =
1⊤xt+γJ(xt+1), and assuming the value function is affine,
this yields Q(xt, ut) = 1⊤xt + γp⊤(Mxt + ut) + γp0.

This can be written compactly as Q(xt, ut) = q⊤
[
xt

ut

]
+

q0, where q =

[
qx

qu

]
=

[
1+ γMp

γp

]
, and q0 = γp0.

Notably, qu = γp = γqx, and q0 = γ2λ
1−γ mini[q

x]i. The

Q-function also satisfies the Bellman equation in Q-factor
form (Sutton and Barto, 2018), given by

Q(xt, ut) = c(xt, ut) + γ min
ut+1∈U(λ)

Q(xt+1, ut+1), (7)

with the optimal policy as u∗
t = argminut∈U(λ) Q(xt, ut).

Substituting the affine form of the Q-function into (7) and
simplifying, we obtain(

q −
[
1
0

])⊤ [
xt

ut

]
= γq⊤

[
xt+1

0

]
+ β, (8)

where β := (γ− 1)q0 + γλmini[q
u]i. Using the expressions

for q0 and qu, we find that β = 0. Substituting qu = γqx

into (8) with β = 0, we arrive at the model-free equation

(qx − 1)⊤xt = γ(qx)⊤(xt+1 − ut). (9)

Collecting data over time, we stack t such relations to
obtain

(qx − 1)⊤ [x0 · · · xt−1] = γ(qx)⊤ [x1 − u0 · · · xt − ut−1] .
(10)

Multiplying (10) on the right by Z⊤
t , where Zt :=

[x0 · · · xt−1], and defining the empirical data correlation
matrices

Σt =

t−1∑
k=0

xkx
⊤
k +Σ0, Σ̄t =

t−1∑
k=0

(xk+1 − uk)x
⊤
k , (11)

with regularization term Σ0 ≻ 0, yields the linear data-
driven equation

(qx − 1)⊤Σt = γ(qx)⊤Σ̄t, (12)

from which we can compute an estimate of the optimal
parameter qx directly from data using

qxt := (I − γΣ−1
t Σ̄⊤

t )
−11,

qut := γqxt ,

q0t :=
γ2λ

1− γ
min
i
[qxt ]i,

(13)

where qxt denotes the data-driven estimate of qx, forming
the basis of the proposed policy construction as will be
discussed next.

2.5 Problem Formulation

In this letter, we assume that the dispatcher does not
know the processing rates and has to learn them while
scheduling dispatching policies in an online fashion. After
dispatching a job at time t, it receives a noisy observation
of the number of awaiting jobs across all units at the end
of time slot [t, t+ 1], denoted by xt+1 and given by

xt+1 = Mxt + ut + wt. (14)

Inspired by (13), we propose and analyze the performance
of the following dispatching policies in controlling system
(14)

Σt = Σt−1 + xt−1x
⊤
t−1, Σ0 ≻ 0

Σ̄t = Σ̄t−1 + (xt − ut−1)x
⊤
t−1, Σ̄0 = 0

qxt = (I − γΣ−1
t Σ̄⊤

t )
−11,

ut = λeit + ϵt where it = argmin
j

[qxt ]j .

(15)

At each step, a control input ut−1 is applied at state xt−1,
resulting in a new state xt, and the triplet (xt−1, ut−1, xt)
is used to update the correlation matrices (Σt, Σ̄t) in
policy (15). An estimate qxt is then computed, from which
the first component of the next control ut is derived. The
second component, ϵt, ensures exploration and serves as a
probing action in the spirit of dual control (Wittenmark,
1995). The linear model in (2) is robustified by additive
disturbances wt, which capture unmodeled dynamics, un-
controlled traffic, and on/off server behavior (Zhou and
Doyle, 1998), motivating our avoidance of statistical as-
sumptions on wt.
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