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Introduction

Many systems in control and biology applications involve
large populations of agents, but only aggregated state ob-
servations are available. Examples include pedestrian flows
in crowd dynamics [10, 15], swarms of animals [17], and
population-level measurements in single-cell biology [2, 13,
7]. These populations are typically heterogeneous, compris-
ing several ensembles governed by distinct dynamical models.
Identifying the ensembles and associated dynamics from ag-
gregate data may have a wide range of implications: in crowd
dynamics, it enables forecasting and control of heterogeneous
groups with different objectives [10, 12]; in biology, it allows
for identifying subpopulations of cells with distinct develop-
mental or disease trajectories from population-level measure-
ments [1, 14], facilitating more targeted interventions. To the
best of our knowledge, previous works on joint system identi-
fication of several systems consider only settings, where indi-
vidual particle trajectories are available [4, 6, 9]. We propose
a novel framework based on optimal transport that jointly
infers ensemble assignments and identifies the dynamics of
each ensemble from aggregate observations alone. We see a
great potential for the proposed framework for problems in
control theory, as well as related fields of research such as
signal processing. For example, we have in a follow-up paper
applied our framework to the problem of separating audio
sources for real speech data [5].

Optimal transport has emerged as a powerful tool for
modeling and controlling the evolution of distributions [3, 8],
and has recently been applied to the inference of dynamics
in homogeneous populations [11]. Consider two non-negative
measures µ, ν ∈ M+(X) over a space X with the same total
mass. The optimal transport problem is to find the most
efficient way to move the mass from µ to ν with respect to
an underlying cost function c : X ×X → R+, where c(x, y)
describes the cost for moving a unit mass from x ∈ X to
y ∈ X. The optimal transport between the given measures
is described by a transport plan, which is a measure m ∈
M+(X × X), where m(x, y) describes the amount of mass
moved from x ∈ X to y ∈ X. Thus, the optimal transport
plan m is the solution to [16]

minimize
m∈M+(X×X)

∫
X×X

c(x, y)dm(x, y)

subject to

∫
A×X

dm(x, y) =

∫
A

dµ(x),∫
X×B

dm(x, y) =

∫
B

dν(x),

for all measurable sets A,B ⊂ X.

(1)

Note that the constraints in (1) impose that the transport
plan m indeed transports the mass from µ to ν.

Problem formulation

We assume that each ensemble is described by a discrete-time
dynamical system

x(t+1) = Φθk (x
(t)), for k = 1, . . . ,K, (2)

For a pair of consecutive states (x(t), x(t+1)) in the same en-
semble, we define their transport cost as

cθ(x
(t), x(t+1)) =

∥∥∥Φθ(x
(t))− x(t+1)

∥∥∥2

2
.

In order to separate the populations, and identify their dy-
namics, we find a transport plan m

(t)
k for each ensemble

k = 1, . . . ,K and each time step t = 1, . . . , T − 1, by solving
the optimal transport problem

minimize
m

(t)
k

∈M+(X×X)

k=1,...,K,t=1,...,T−1

θk∈RP , µ
(t)
k

∈M+(X)

k=1,...,K,t=1,...,T

T−1∑
t=1

K∑
k=1

∫
X×X

cθk (x, y)dm
(t)
k (x, y) (3)

subject to

∫
A×X

dm
(t)
k (x, y) =

∫
A

dµ
(t)
k (x),∫

X×B

dm
(t)
k (x, y) =

∫
B

dµ
(t+1)
k (x),

for all measurable sets A,B ⊂ X, t = 1, . . . , T − 1

K∑
k=1

µ
(t)
k = µ(t), t = 1, . . . , T,

Example 1 Consider two Gaussian mixtures µ and ν with
two modes, where the means are switched. These modes
can be understood as two subpopulations with different be-
haviors. Standard optimal transport does not use this infor-
mation, as it minimizes the cost of moving the full distribu-
tion, see Figure 1a. We propose to search for two transport
plans with parameter dependent cost assuming the dynamics
Φθk (x) = x+θk. Using these dynamics in (3) with T = 2 and
K = 2, results in a unique minimizer with objective value 0,
which is illustrated in Figure 1b. Each of the transport plans
transports one of the modes.

Proposition 1 If the dynamics Φθ in (2) are linear in the
parameter θ, then the non-convex problem (3) is bi-convex in
the sets {

{m(t)
k }T−1

t=1 , {µ(t)
k }Tt=1

}K

k=1
and {θk}Kk=1.

Thus, we solve the problem by a block coordinate descent
method with the blocks as defined in the proposition. Under
mild conditions, this method is guaranteed to converge to a
local minimum.



   

(a) Classical optimal transport with cost
function c(x, y) = ∥x− y∥22.

      

(b) Our method with underlying costs cθk (x, y) = ∥x− y + θk∥22, for k = 1, 2, separates
the transport into two transport plans m1 and m2, which each move one of the modes.

Figure 1: Comparison of classical and separated optimal transport between two Gaussian mixtures µ and ν. We show
the given distributions and optimal the transport plans, where dark areas correspond to support in R2, as well as the
corresponding evolutions of the distributions over time.

(a) Squared error for estimates
of the ensemble dynamics pa-
rameters.

(b) The fraction of particles
correctly grouped into their
corresponding ensembles.

Figure 2: Simulation results of linear system identification
of K = 3 ensembles over T = 7 time steps. The lines corre-
spond to the median over 500 simulations, and the confidence
regions cover 90% of the simulations.

Numerical experiments

We consider linear dynamics x(t+1) = Ax(t) + b and gener-
ate aggregate observations of K = 3 ensembles with 10, 12,
and 15 particles, respectively, over T = 7 time instances.
In each simulation, the dynamics and initial conditions are
drawn randomly, and Gaussian noise is added at every time
step. Using our proposed method, we estimate both the
dynamics and the ensemble assignments without assuming
knowledge of the number of particles per ensemble. We run
our algorithm from multiple random initializations and se-
lect the best solution. Figure 2a shows the estimation error
for different noise levels, compared with two baselines: an
oracle with access to true identities, and a semi-oracle that
sees individual trajectories but not ensemble labels. Our
method matches the oracle performance at low noise and
maintains high classification accuracy even as noise increases
(Figure 2b), outperforming the semi-oracle especially when
clustering becomes unreliable.
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