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I. INTRODUCTION
Modern control systems are often large and complex,

consisting of multiple interconnected controllers and
processes. A simple case of such systems is in platooning
problems, where controllers and processes are arranged in
a linear structure. This setup is commonly used to model
vehicle platoons, but also appears in other applications
such as skyscrapers with coupled oscillating floors [1], or
in power grid and robotic swarm applications.

A problem often arising in large scale platoons is the
emergence of resonance. Since the controllers often work
with limited, local information the performance might
be good on short scales such as keeping neighboring
processes in sync with each other, while almost no control
action is taken to mitigate long scale oscillations [2].
Another, closely related issue is that of instability. When
the individual processes are unstable, extending the
platoon indefinitely typically renders the entire system
unstabilizable [3].

A common modeling assumption in the literature
is that the controllers and processes are identical for
all members of the platoon, i.e. that the platoon is
homogeneous. In contrast, this work explores how a just
small bit of heterogeneity can be exploited to change the
system behavior. Specifically, we show how modifying
just the last controller in an otherwise homogeneous
platoon can enforce length-independent behavior. This
builds upon the results in [4], extending them to a
broader and more general framework.

II. MODELING
We model platoons as a chain of connected controller-

process pairs, with n processes pk and n controller ck for
k = 1, ..., n. In this work we consider symmetric bidirec-
tional control, where both controllers and processes are
SISO systems and each controller is fed the difference
in output between their corresponding process and the
neighboring ones. If the output of process k is denoted
yk the input to controller k becomes

(yk−1 − yk)− (yk − yk+1) = yk−1 + yk+1 − 2yk. (1)

For the first platoon member a reference signal is used
instead of one the outputs, and for the last member
an offset g is used in the control law. When properly
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Fig. 1: Block diagram for the full platoon system.

tuned this feedback loop leads to an averaging behavior
in the platoon, where the processes in the case of vehicle
platoons stabilize at a distance g from each other.

By introducing matrices C, P and X the full system
can be described by the block diagram in Fig. 1. The
matrices C and P are simply diagonal matrices where the
k:th diagonal entry corresponds to the transfer-function
for process or controller number k respectively. The
X matrix describes how the output signals from each
process are feed back into the controllers according to
(1), and is given by

X =



1 0 . . . . . . 0

−1
. . . . . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1


. (2)

The signals w̄ and d̄ corresponds to measurement noise
and external disturbances respectively, and the signal r̄
handles both the reference value for the first platoon
member, and the offset for the last. The outputs ȳ and
the relative outputs ∆ȳ are of interest from a control
perspective and the transfer function from from example
r̄ to ∆ȳ is given by

∆Ȳ = −
(
I +XPCXT

)−1
XPCXT R̄, (3)

where the factor
(
I +XPCXT

)−1, is of importance.
This factor shows up also in other transfer functions
between signals in the control loop and can be seen as
a sensitivity function for the system. A result related to
this factor is therefore presented in the next section.



III. MAIN RESULT
Theorem 1: Let n ∈ N and let h and hn be variables

related according to h = hn(hn + 1). Furthermore let H
and X be n× n matrices defined by

H =


h 0 . . . 0

0
. . . . . .

...
...

. . . h 0
0 . . . 0 hn

 , X =



1 0 . . . . . . 0

−1
. . . . . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1


.

(4)
Then the inverse of I + XHXT exists if and only if
hn 6= −1, and has ij:th entry equal to

hi+j−2
n

(hn + 1)i+j−1
+

min(i,j)∑
k=2

hi+j−2k
n

(hn + 1)i+j−2(k−1)
. (5)

Remark 1: In the context of platoons, the theorem
groups each process pk and its corresponding controller
ck into a combined system hk = pkck. Homogeneity is
then assumed for all k < n, so that hk = h for all such
k smaller than n.

IV. DISCUSSION AND NUMERICAL RESULTS
Theorem 1 gives an explicit formula for the entries

of
(
I +XHXT

)−1 when the controller process pairs
of the platoon follow a special relation, namely that
hk = hn(hn + 1) for all k < n. This essentially means
that a special controller is used on the last platoon
member, while the rest of the system is homogeneous.
The benefit of this special controller becomes clear when
studying the entries of the sensitivity function matrix,
since these does no longer depend on n, as they would for
an entirely homogeneous platoon. In practice this means
that extending the platoon, can no longer affect earlier
platoon members and that resonance is mitigated since
it is typically length dependent. This change in system
behavior can be seen in Figs. 2 and 3.

We can also conclude that the stability properties
of the platoon can be improved using this special last
member controller. The entries given in (5) are now all
constructed from sums and products of the terms hn and
(hn+1)−1. If these are stable transfer functions non of the
entries of the sensitivity function matrix will be unstable
and then the platoon will be stable independently on n,
in contrast to how increased platoon length often breaks
stability for entirely homogeneous platoons.

V. CONCLUSION
To conclude, this work has shown how heterogeneity

can be used to alter system behavior for platoons
to achieve both length-independent system responses,
and scalable stabilization properties. This was done by
introducing a special control-process pair hn as a last
platoon member, related to the others by the formula
h = hn(hn + 1). Numerical simulations confirms that
this special control-process pair reduces resonance, and
leads to length-independent behavior.

Fig. 2: The step response using homogeneous control for
platoons of different length.

Fig. 3: The step response using heterogeneous control for
platoons of different length.
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