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Abstract— Dosing generally refers to feeding chemicals to a
process until a desired level of effect is reached. The latter
assumes that the effect of the chemicals on the process can
be measured. Here, only discrete dosing is considered when
calculated quantities of a chemical are introduced to the process
at certain time instances. Applications of dosing are common
in process and food industry, medicine, and biotechnology.
The intermittent mode of discrete dosing calls for a hybrid
(continuous-discrete) modeling of the closed-loop system, where
the plant dynamics are captured by differential equations
whereas the control law is described by difference equations.
It is suggested that pulse-modulated feedback to be utilized
for calculating the discrete doses and their timing from the
continuously measured plant output in order to keep the process
output within a pre-defined interval of values. Controller design
methods are considered and illustrated by a simple control
system of dosing a neuromuscular blockade agent in anesthesia.

I. BACKGROUND

An everyday life example of a dosing application is fol-
lowing doctor’s orders on medication regimen, for instance,
“take one tablet twice a day”. This is an open-loop dosing
strategy that does not consider the medication effect in the
patient. Further, increasing or decreasing each single dose
corresponds to the mechanism of amplitude modulation in
pulse-modulated control, whereas manipulating the dosing
interval constitutes the principle of frequency modulation.

Besides pharmacotherapies, where drugs are administered
in tablet or injection form, similar dosing problems char-
acterized by (relatively rare) impulsive control action and
continuous measurement of the effect are commonly found
in space technology, water treatment, food, chemical and bio-
chemical industries, agriculture, steel and mining industries,
to name a few. An industrial dosing control system operates
typically open-loop and is implemented by means of discrete
logic or automata.

Relieving the burden of manual drug administration over
lengthy periods of time requires automation. Surgery with
operative time over two hours is common and has to be
reliably supported by general anesthesia that allows patients
to be unconscious and free of pain throughout the procedure.

General anesthesia is nowadays predominantly achieved
by intravenous administration of sedatives (hypnotics), anal-
gesics, and muscle relaxants, i.e. neuromuscular blockade
(NMB) agents. In most cases, NMB agents are administered
via continuous infusion. However, controlled boluses are
recommended in some cases because intermittent doses allow
serial evaluation and reduce the risk of developing my-
opathies due to prolonged paralysis [1]. The effect of NMB
agents is routinely measured by neuromuscular monitors,
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devices that electrically stimulate a peripheral nerve while
also quantifying the evoked responses. Compared to the
administration of fixed doses (open-loop control), using the
monitors for dose titration during the course of treatment
significantly reduces the exposure to NMB drugs without
affecting the observed clinical outcome [2].

The present contribution investigates the dynamical prop-
erties of a drug dosing system in a feedback framework.
The NMB is selected as application due to the availability
of reliable effect quantification that enables feedback control.

II. MATHEMATICAL MODELS

Continuous part: Consider a time-invariant Wiener sys-
tem whose measured output is a nonlinear function of the
linear block output. The linear block is given by the state-
space representation

ẋ(t) = Ax(t), ȳ(t) = Cx(t), (1)

where the matrices are

A =

−a1 0 0
g1 −a2 0
0 g2 −a3

 , C =
[
0 0 1

]
, (2)

a1, a2, a3 > 0 are distinct constants, and g1, g2 > 0 are
positive gains. The measured output is then

y(t) = φ(ȳ), (3)

where φ(·) is a smooth function.
Discrete part: Continuous-time system (1) is controlled

by a pulse-modulated feedback that gives rise to instanta-
neous jumps in the state vector x(t)

x(t+n ) = x(t−n ) + λnB, tn+1 = tn + Tn, (4)

B =
[
1 0 0

]⊤
, n = 0, 1, . . . ,

where
Tn = Φ̄(y(tn)), λn = F̄ (y(tn)).

In pulse-modulated control, Φ̄(·) is referred to as the fre-
quency modulation function and F̄ (·) as the amplitude mod-
ulation function. The minus and plus in a superscript in (4)
denote the left-sided and right-sided limits, respectively. The
described by (4) control mechanism corresponds to plant
(1) being subject to an impulsive action λnBδ(tn) applied
directly to the state vector, where δ(·) is Dirac delta function.

With ◦ denoting composition, introduce the functions

Φ(·) ≜ (Φ̄ ◦ φ)(·), F (z) ≜ (F̄ ◦ φ)(·).
Then closed-loop system (1), (4) constitutes a hybrid
(continuous-discrete) system that is able to exhibit a wide
range of nonlinear dynamics phenomena but can also be
designed to produce a desired behavior through the choice
of the modulation functions F̄ (·), Φ̄(·).



A. Pharmacokinetic-pharmacodynamic model

A minimally parametrized pharmacokinetic-pharmacody-
namic (PKPD) model of the NMB agent atracurium is
introduced in [3]. The output y(t) [%] represents the effect
of the NMB agent and is measured by a train-of-four neuro-
muscular monitor [4]. The maximal level of y(t) = 100% is
achieved when the NMB is initiated and there is no drug in
the bloodstream of the patient. The elements of the matrix A
in (2) are parametrized in terms of a common factor α > 0

a1=v1α, a2=v2α, a3=v3α, g1=v1α, g2=v2v3α
2, (5)

where v1 = 1, v2 = 4, v3 = 10 are fixed coefficients
calculated from clinical data. The PD part is modeled by
a Hill function of order γ

y = φ(ȳ) =
100Cγ

50

Cγ
50 + ȳγ(t)

, γ > 0. (6)

Here C50 = 3.2425 µg ml−1 is the drug concentration that
produces 50% of the maximum effect.

III. DESIGN

A controller design algorithm yields the parameters of the
modulation functions in (4) for a given by the constants
(α, γ) PKPD model and the parameters of a desired 1-cycle.
The design procedure is covered in more detail in [5].

Select the parametrization of the modulation functions of
controller (4) as piecewise affine, i.e.

Φ(ξ) =


Φ2 Φ2 < k2ξ + k1,

k2ξ + k1 Φ1 ≤ k2ξ + k1 ≤ Φ2,

Φ1 k2ξ + k1 < Φ1,

(7)

F (ξ) =


F1 k4ξ + k3 < F1,

k4ξ + k3 F1 ≤ k4ξ + k3 ≤ F2,

F2 F2 < k4ξ + k3.

(8)

The parameter set k1, k2, k3, k4 and F1, F2, Φ1,Φ2 com-
pletely describes pulse-modulated controller (8), (7). The
modulation functions limits, as well as the parameters of
the desired (stationary) periodic solution, are derived from
clinical practice and selected as F1 = 150 µg/kg, F2 =
400 µg/kg, Φ1 = 11 min, Φ2 = 50 min. Therefore, control
law (4) cannot produce a dose higher than F2 or lower than
F1. Further, there is at least one dose administered in Φ2

minutes but not closer than Φ1 minutes to the previous one.
The design aim is to render an orbitally stable 1-cycle with

the parameters λ = 300µg/kg, T = 20 min in the closed-
loop system comprising (1), (6), (4). The design procedure
is composed of three steps.

Step 1: The fixed point corresponding to the desired peri-
odic solution is calculated for model (1) as

X = λ(e−TA −I)
−1

B, ȳ0 ≜ CX.

Step 2: The coefficients k2, k4 are selected such that the
Jacobian Q′(X) is Hurwitz-stable

Q′(X) = AΦ +WKC, AΦ = eAΦ(ȳ0),

Fig. 1. Convergence to the 1-cycle from x(0) = 0 in the NMB model
stabilized by the modulation function slopes F ′(y0) = −0.15, Φ′(y0) =
0.29. Top plot: the nonlinear output y(t). The horizontal black dashed lines
mark inft y(t) and supt∈[T,5T ] y(t). The stationary output corridor values
for the 1-cycle are marked in red. Bottom plot: the linear output ȳ(t).

W =
[
J D

]
,K⊤ =

[
F ′(ȳ0) Φ′(ȳ0)

]
.

Step 3: The rest of the coefficients of the modulation
functions are obtained from

F (ȳ0) = (F̄ ◦ φ)(ȳ0) = k4φ(ȳ0) + k3 = λ,

Φ(ȳ0) = (Φ̄ ◦ φ)(ȳ0) = k2φ(ȳ0) + k1 = T.

A simulation of the designed controller in the closed-loop
for the nominal parameters (ᾱ, γ̄), starting induction of NMB
(x(0) = 0, y(0) = 100% ), is depicted in Fig. 1. The corridor
of the output values under stationary conditions is calculated
according to [6]. The output signal converges promptly to
the stationary solution with a minimal overshoot.
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