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Abstract: Deep brain stimulation (DBS) programming is a complex, manual process aimed
at maximizing therapeutic effects while minimizing side effects. This study investigates mathe-
matical optimization for DBS using functional subdivisions of the subthalamic nucleus (STN)
to define a desired activation profile. A Mixed Integer Linear Programming (MILP) framework
is introduced, allowing for dissimilar current distribution across active contacts.

1. INTRODUCTION

Deep Brain Stimulation (DBS) is an established treatment
for neurological and psychiatric conditions such as Parkin-
son’s Disease (PD), where electrical pulses are delivered
to targeted brain regions via implanted leads. The goal
of DBS programming is to optimize symptom relief while
minimizing side effects by selecting suitable stimulation
parameters. Despite advancements in DBS technology, the
process remains largely manual and time-consuming, rely-
ing heavily on trial-and-error and subjective assessments.
To address these limitations, patient-specific computa-
tional modeling and image-guided tools have emerged as
promising aids in streamlining DBS programming. The
growing complexity of modern DBS leads—with up to
16 contacts—further underscores the need for automated,
optimization-based approaches.

DBS programming can be formulated as a mathematical
optimization problem aimed at achieving a desired acti-
vation profile. This includes maximizing activation within
the target region while avoiding activation of surrounding
structures associated with side effects. Here, a Mixed In-
teger Linear Programming (MILP) framework, previously
used in general brain stimulation contexts, is adapted to
DBS programming, allowing dissimilar current distribu-
tions across a set of active contacts.

2. METHODOLOGY

2.1 Patient Cohort

This study includes a cohort of ten PD patients treated
at Uppsala University Hospital 1 . Nine of these patients
received bilateral DBS, resulting in a total of 19 implanted
leads. All patients were implanted with state-of-the-art,
eight-contact directional leads. In all cases, the intended
surgical target was the subthalamic nucleus (STN). The
lead designs along with the contact labels used in this
paper are illustrated in Fig. 1a and Fig. 1b.

⋆ This work is funded by the Swedish Research Council via Grant
2020-02901 to the project “Patient-specific dynamical modeling
and optimization of deep brain stimulation” within The EU Joint
Programme – Neurodegenerative Disease Research.
1 The study was approved by the Swedish Ethics Review Authority,
Registration number 2019–05718..
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Fig. 1. (a) An eight-contact Boston Scientific Vercise
Cartesia™ Directional lead relative to the functional
subdivisions of the STN Ewert et al. (2018) along
with target (blue) and constraint (orange) points. The
original set of points were downsampled using a voxel
filter with a voxel length of 0.95mm. (b) The Abbot’s
Medical Infinity™ Directional lead with the contact
nomenclature used in this study.

2.2 Mathematical Modeling

In DBS modeling, a common and practical approach to
estimate the volume of tissue activated (VTA) involves
identifying regions where the electric field norm E exceeds
a given threshold, Eth. A point k is considered activated
(or excited), if Ek ≥ Eth. DBS programming is formalized
as a procedure seeking activation in a set of target points
Ωt, while avoiding activation in a set of constraint points
Ωc.

The spread of the electric field in neural tissue surrounding
the DBS lead is simulated using a Finite Element Method
(FEM) model. A static approximation of the electric field
is computed by solving the following partial differential
equation (PDE) that describes the distribution of the
electric potential u in three dimensions

∇ · (σ∇u) = 0, (1)
where σ denotes conductivity.

For a DBS lead with N contacts, (1) is solved N times,
each time applying a unit stimulus of 1mA to a single
contact while all others contacts remain inactive. For a set
of points Ω with NΩ locations relevant to the problem-



setup, the electric field norm Ekp for a unit stimulus
applied to contact p at each location k = 1, . . . , NΩ is
interpolated to construct the transfer matrix defined as

T =


E11 E12 E13 . . . E1N
E21 E22 E23 . . . E2N
...

...
...

...
ENΩ1 ENΩ2 ENΩ3 . . . ENΩN

 . (2)

The linearity of electrical model (1) allows scaling the unit
stimulus solution to any desired current amplitude. When
multiple contacts belonging to the set p = 1, ..., N are
simultaneously active, the cumulative electric field norm
can be computed by superimposing individual solutions.
This is expressed as

y = Tu, (3)
where u = [u1, ..., uN ] is the vector of current amplitudes
applied to each contact, and y is the resulting electric field
norm at all relevant locations.

Switching a contact from inactive to active alters the
boundary conditions in (1), making exact superposition
of individual fields strictly speaking incorrect. Specifically,
the superimposed solutions include the influence of in-
duced currents at other contacts, which should not be
present when a contact is actively stimulating. As a result,
neglecting the effect of induced currents is expected to
slightly overestimate the electric field norm, in particular
near the DBS lead.

2.3 Mixed Integer Linear Programming

A general approach to solving electrical stimulation prob-
lems using MILP was introduced in Abouelseoud et al.
(2018). In this work, the formulation was adapted to the
context of DBS by using VTA, rather than induced cur-
rents, to quantify stimulation effects. Additionally, since
only unipolar stimulation is considered, constraints on the
reference electrode (anode) or the inclusion of negative
current amplitudes become redundant. Under these con-
siderations, the MILP formulation can be rewritten as

u∗ =argmin
u,d

 1

Nt

Nt∑
i=1

di +
1

Nc

Nc∑
j=1

dj

 ,

s.t. Tiu+ Ldi ≥ Eth,t, ∀i ∈ Ωt,

Tju− Ldj ≤ Eth,c, ∀j ∈ Ωc,

di, dj ∈ {0, 1},

(4)

where di and dj are binary dummy variables and L is
a larger number that allows for the relaxation of the
constraint at a given target or constraint point. To allow
for sufficient constraint relaxation, L should be chosen
significantly larger than Eth,t, but too large L may result
in computational inefficiency. A solution derived from (4)
directly allows to determine the number of targets points
and constraint points that are activated and therefore
either fulfill or violate the optimization objective.

3. RESULTS

The optimized current distributions computed with the
MILP approach are given in Fig. 2. Notably, the MILP ap-
proach suggests zero amplitude in both leads of Patient 10.
This is likely explainable by the poor lead placement
relative to the atlas-based subdivisions of the STN in this
patient.

Fig. 3 presents the runtimes for solving the MILP algo-
rithm, for different voxel filter sizes. Larger voxel filter
sizes imply smaller number of both target and constraint
points, i.e. Nt and Nc.

Fig. 2. Optimized current distributions across all eight
contacts computed from the MILP approach given
in (4). The values range from zero (light blue) to one
(dark blue), representing the proportion of the total
applied current allocated to each contact.

Fig. 3. Runtimes to solve the MILP formulation for dif-
ferent voxel filter sizes. Runtimes for MILP exceeded
the time limit of 1500 s in three cases at 0.8mm and
in one case at 0.85mm.

4. DISCUSSION

The results show that MILP can be used used in au-
tomated DBS programming, including dissimilar current
distribution across active contacts. As the number of tar-
get and constraint points increases, the computational
complexity of the MILP problem increases. Additionally,
the optimization results rely heavily on the selected target
and constraint regions. Choosing atlas-based subdivisions
of the STN may be overly simplistic. In reality, therapeutic
DBS likely modulates not only local structures but also
connected white matter tracts. Therefore, future work
should focus on comparing quantified patient response of
the suggested configurations with clinically active settings
to further assess target and constraint structures and im-
prove the utility of the optimization models.
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