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Introduction. Splitting algorithms are fundamental for nonsmooth optimization. They define a class
of iterative methods that allow to solve highly structured problems by decomposing them into simpler
components, each handled through efficient and easily computable operations. In this paper, we consider
monotone inclusion problems of the form:

Find x ∈ H such that: 0 ∈
n∑

i=1

Ai(x) +

m∑
i=1

Ci(x), (0.1)

where H is a real Hilbert space, each operator Ai : H → 2H is maximal monotone, and Ci : H → H is
1
βi
-cocoercive for some βi ∈ R+. If the resolvent JγA := (Id+γA)−1 with A := A1 + · · · + An can be

computed efficiently for any given step size γ > 0, one can address (0.1) through the forward-backward
algorithm [7] which, from a starting point x0 ∈ H, iterates:

xk+1 = JγA(x
k − γC(xk)), for all k ∈ N, (0.2)

where C := C1 + · · ·+Cm. The sequence generated by (0.2) is well known to converge weakly to a solution
to (0.1), if one exists and if γ < 2

β . However, in practice the operator JγA can rarely be computed efficiently.

The classical alternative if n = 2 and m = 0 is the Douglas–Rachford splitting (DRS) algorithm [7] and if
m = 1, the Davis–Yin method [6, 10], that, given z0 ∈ H, iterates:

xk+1
1 = JγA1

(zk),

xk+1
2 = JγA2(2x

k+1
1 − γC(xk+1

1 )− zk),

zk+1 = zk + (xk+1
2 − xk+1

1 ),

for all k ∈ N. (0.3)

which reduces to Douglas-Rachford splitting if C = 0, and to (0.2) if A1 = 0.
General methods for solving (0.1) often use lifting tricks, applying a simpler method, like the proximal

point method, or the Davis-Yin method, to a reformulation in a higher dimensional product-space, usually
Hn−1 or Hn, see [10], the graph-DRS algorithmic framework [4] [4] for m = 0, and the graph-forward-
backward algorithm [2] for m = n− 1. The need to introduce n− 1 (or more) variables is not a coincidence.
A result by Ryu [11], later extended in [8, 9], demonstrated that these types of frugal splitting methods
cannot solve arbitrary instances of (0.1) by storing fewer than n−1 variables between iterations. For n > 2,
the landscape of such methods becomes richer, giving rise to a variety of structurally diverse algorithms that
have attracted significant attention in recent years [8, 9, 1, 3, 5]. These can all be understood as fixed-point
iterations with respect to averaged operators, which lead us to the core question:

Can we characterize all averaged frugal splitting methods with minimal lifting to solve (0.1)?

To be more precise, we consider fixed-point iterations with respect to T : Hn−1 → Hn−1 to solve arbitrary
instances of (0.1), with the following properties:

(P1) Splitting : Each evaluation of T is constructed solely from resolvent evaluations of Ai, direct evalua-
tions of Ci, and arbitrary linear combinations of their inputs and outputs.

(P2) Frugality : Each operator is evaluated exactly once per evaluation of T , either directly for Ci or
through a resolvent for Ai.

(P3) Minimal lifting : The method only needs to store n− 1 variables between iterations.
(P4) Fixed-point encoding : Fixed points of T correspond to solutions of (0.1) and vice versa.
(P5) Averaged nonexpansive: The operator T is θ-averaged on Hn−1, θ ∈ (0, 1), equipped with the product

norm.
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We show that the entire class of methods satisfying properties (P1)–(P5) is given by Algorithm 1. This
represents the first, yet partial, answer to a challenging open problem proposed by Ryu in [11], on the
characterization of all unconditionally stable methods. Algorithm 1 can be shown to encompass several
methods in the literature, and also allows us to devise new ones with desirable numerical properties. In par-
ticular, based on Algorithm 1, we formulate methods that efficiently handle data heterogeneity and admits
distributed implementations on general networks. We further study the influence of the four parameterizing
matrices M , P and H,K and propose three heuristics to achieve excellent performance in practice.

Contributions.

• We show that Algorithm 1 parametrizes all θ-averaged frugal splitting methods with minimal lifting,
• We propose a special case of Algorithm 1 that can efficiently handle different operators with different
cocoercivity constants, and admits distributed implementations on general networks without requiring
the knowledge of a global cocoercivity constant.

• We propose heuristic choices ofM , P andH,K that make Algorithm 1 particularly efficient compared
to other existing special cases.

Algorithm 1: The complete class of methods for solving (0.1) satisfying (P1)–(P5).

Pick: A relaxation parameter θ ∈ (0, 1), M ∈ Rn×(n−1), with Ran(1) = Null(MT ), P ∈ Rn×(n−1)

with Ran(1) ⊂ Null(PT ) and H,KT ∈ Rn×m, with necessary zero structure, and such that
HT

1 = K1 = 1

Let: S := MMT + PPT + 1
2 (H −KT ) diag(β)(HT −K) and γ := 2 diag(S)−1

Input: z0 = (z01 , . . . , z
0
n−1) ∈ Hn−1

for k = 0, 1, 2, . . . do
for i = 1, 2, . . . , n do

xk+1
i = JγiAi

(
− γi

i−1∑
h=1

Sihx
k+1
h − γi

m∑
j=1

HijCj

( i−1∑
h=1

Kjhx
k+1
h

)
+ γi

n−1∑
j=1

Mijz
k
j

)
for i = 1, 2, . . . , n− 1 do

zk+1
i = zki − θ

n∑
i=1

Mijx
k+1
i
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